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N -Ink Printer Characterization With
Barycentric Subdivision

Vahid Babaei and Roger D. Hersch

Abstract— Printing with a large number of inks, also called
N-ink printing, is a challenging task. The challenges comprise
spectral modeling of the printer, color separation, halftoning,
and limitations of the amount of inks. Juxtaposed halftoning,
a perfectly dot-off-dot halftoning method, has proved to be useful
to address some of these challenges. However, for juxtaposed
halftones, prediction of colors as a function of ink area coverages
has not yet been fully investigated. The goal of this paper is
to introduce a spectral prediction model for N-ink juxtaposed-
halftone prints. As the area-coverage domain of juxtaposed
inks forms a simplex, we propose a cellular subdivision of
the area-coverage domain using the barycentric subdivision of
simplexes. The barycentric subdivision provides algorithmically
straightforward means to design and implement an N-ink color
prediction model. Within the subdomain cells, the Yule–Nielsen
spectral Neugebauer model is used for the spectral prediction.
Our proposed model is highly accurate for prints with a large
number of inks while requiring a relatively low number of
calibration samples.

Index Terms— Printer characterization, multi-channel
printing, cellular Yule-Nielsen, color prediction model, spectral
modeling, interpolation, simplex, barycentric subdivision, point
location problem, multi-material 3D print.

I. INTRODUCTION

MULTI-CHANNEL printing or N-ink printing refers to
printing processes with more than 4 inks [1]–[5]. There

are various motivations for N-ink printing. The main purpose
is to expand the color gamut of CMYK prints. Spectral
reproduction is another objective, which aims at obtaining
an accurate color reproduction under more than one viewing
condition [6]. Synthesizing smooth images with low graininess
also requires adding new inks, such as light cyan and light
magenta, to the palette of the printer. Additional inks can also
be used as spot colors. Spot colors are very popular in the
packaging industry. Recently, an N-ink process for printing
with metallic inks has been proposed [7].

N-ink printing faces several challenges. The first chal-
lenge is the color characterization of an N-ink printer.
Printer characterization establishes a relationship between
area-coverages of inks and the resulting printed color. For a set
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of printer control-values, forward characterization determines
the reflectance spectrum. There are mainly two approaches for
printer characterization. The first one is a black-box approach
relying on color measurements of printed samples and on inter-
polation to create relationships between colors and amounts of
inks [8]. The second approach relies on spectral prediction
models that account for the interaction of light, paper and
ink halftones [9]. The parameters of the spectral prediction
models are usually derived from the calibration set, a set of
measured color samples. The challenge in calibration of an
N-ink printer resides in the number of required measurements.
When increasing the number of inks, the size of the calibration
set grows rapidly, usually at an exponential rate.

Another obstacle to N-ink printing is the total area-coverage
limit. In a printing setup, depending on the substrate, the
inks and the printing technology, only a limited amount of
ink can be deposited on a selected region. With an N-ink
printer, we cannot superpose a large number of inks at their
full area-coverages. Exceeding the total ink-limit can result
in deteriorated image quality, ink blotting or mechanical
malfunction of the printer.

Halftoning complexity also increases with the number
of inks. Because of moiré artifacts, classic clustered-dot
methods allow at most 4 ink-halftone layers to be laid out
on top of each other. Recent efforts try to design moiré-free
clustered-dot N-ink screens [10], [11]. Although error
diffusion halftoning can avoid moiré, it is not suitable for
printing systems that require clustered dots.

Recently, Babaei and Hersch proposed a juxtaposed
halftoning method that places different inks1 next to
each other without overlap [12]. Discrete-line juxtaposed
halftoning is a look-up table based halftoning method. Each
screen element is a parallelogram composed of discrete line
segments placed side by side (see Figure 7). Each discrete line
segment has a rational thickness offering subpixel precision.
Discrete-line halftoning is very efficient as any color screen
can be synthesized instantly by relying on a library of only
black and white screen elements. Therefore, as many colorants
as desired can be juxtaposed within a single screen-element.

1In this paper we use the term “ink” in a broad sense, sometimes conveying
the meaning of the term “colorant”. A colorant usually refers to the printer
ink, to the superposition of inks and to the unprinted substrate. The number of
colorants in a halftone depends on the number of inks and their superpositions.
In standard CMY printing, the three inks yield the 8 well-known Neugebauer
colorants (also known as Neugebauer primaries). In juxtaposed halftoning,
N inks along with the substrate produce N + 1 colorants. If we apply
juxtaposed halftoning for printing with standard CMY inks, the 8 Neugebauer
primaries are formed by the inks, the ink superpositions and the paper. These
Neugebauer primaries are then placed side by side within a screen element.
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The main purpose of juxtaposed halftoning method is to
enable printing with inks that cannot be superposed. Metallic
inks, fluorescent inks and pearlescent inks are examples of
such non-standard inks. Discrete-line juxtaposed halftoning
is also appropriate for printing with more than three, not
necessarily opaque inks (N-ink printing). It lifts the constraint
on the number of inks per single halftone screen and allows
each ink to take a freely chosen area-coverage. In addition,
since the ink halftones are laid out side-by-side, it inherently
avoids the total ink limit, and moiré due to superposition of
ink-halftones.

This paper introduces a new spectral prediction model
for the N-ink color characterization of a printer. Our focus
is on the characterization of N juxtaposed-ink prints. The
area-coverages domain of N juxtaposed colorants form
an (N − 1)-dimensional simplex. Inspired by the cellular
Yule-Nielsen spectral Neugebauer model for conventional
prints, we develop a cellular subdivision of the ink area-
coverage domain relying on the barycentric subdivision of the
simplexes. Our key insight is that the barycentric subdivision
provides an algorithmically straightforward means to devise
and implement an N-ink spectral printer model. For
N juxtaposed inks, with 2N − 1 calibration samples, our
proposed model offers an accuracy superior to the accuracy
of the nominal Yule-Nielsen spectral Neugebauer model.

II. FORWARD CHARACTERIZATION OF N -INK PRINTERS

A. Yule-Nielsen Spectral Neugebauer Model and Its Variants

Various spectral printer models have been developed
in recent decades. Most of them are based on the well-
known Neugebauer model [13]. The Neugebauer model
predicts the CIEXYZ-color of a given halftone by convex
interpolation of the CIEXYZ colors of all participating
colorants. Assuming that halftone screen dots of different ink
layers are laid out independently one from another, which
is an acceptable assumption for classic halftoning methods
[14], [15], printing N superposed ink-layers yields 2N

possible colorants whose area coverages can be computed by
Demichel equations [9], [15], [16]. In the case of a classic
CMY print, the halftone is composed of the 8 colorants, also
known as the Neugebauer primaries: white, cyan, magenta,
yellow, blue, green, red and black. In order to calculate the
area-coverages of the colorants as a function of the amount
of inks, we use the Demichel equations.

There have been important improvements of the Neugebauer
model. Yule and Neilsen [17] introduced a nonlinear relation-
ship between the predicted color of a single-ink halftone and
the colors of the ink and the paper. The nonlinear relationship
is a power function and accounts for the optical dot-gain.
The exponent n of the power function is usually fitted using
a set of measured halftone patches. Viggiano [18] extended
the Yule-Nielsen equation in order to predict the spectral
reflectance R(λ) of a halftone, yielding the well-known
Yule-Nielsen modified Spectral Neugebauer (YNSN) model:

R(λ) =
(∑

i

ai · Ri (λ)
1
n

)n

(1)

where Ri (λ) expresses the spectral reflectance of colorant i ,
ai expresses its area coverage, the exponent n is the
Yule-Nielsen n-value and λ stands for the wavelength of light.

The prediction accuracy of the YNSN model depends on
how accurately we estimate the effective area-coverages ai of
the contributing colorants. The effective area coverage is the
area coverage of a colorant after accounting for the dot gain.
We can use the nominal area-coverages, thereby obtaining the
nominal YNSN model. Depending on the printer’s precision,
the nominal model can produce significant prediction errors.
To compensate for the dot gain, ink-spreading models calculate
effective area-coverages of inks. In its simplest form, an ink-
spreading model relies on a curve that maps nominal to
effective area-coverages for each single ink. These curves are
obtained by linear interpolation between fitted area-coverages
of halftones printed on paper. Such a model is known as inde-
pendent ink-spreading model. Hersch and Crété [19] developed
a general ink-spreading model that accounts for different
superposition conditions, called the superposition-dependent
ink-spreading model [9].

The cellular YNSN model has been proposed in order to
increase the accuracy of the YNSN model [20], [21]. The
cellular model divides the ink area-coverage domain into
several subdomains. The YNSN model is then applied inside
each subdomain. The new primaries for the cellular YNSN
model are the reflectances of subdomain vertices. As each
subdomain spans a smaller subset of the color space, the model
provides more accurate predictions.

Figure 1 illustrates the cellular YNSN model for three inks.
Subdomains are created by dividing the CMY area-coverage
unit-cube into 8 subcubes, formed by combinations of 0%,
50% and 100% area-coverages of the cyan, magenta and
yellow inks. With such a subdivision, the number of primary
reflectances increases from 8 to 27.

We take the following steps in order to predict the
reflectance of a halftone with a given ink area-coverage.
First, the circumscribing subcube to the considered halftone is
determined according to the halftone’s nominal area coverage.
Then, the ink area-coverages normalized with respect to the
subcube vertices are calculated. Applying the Demichel equa-
tions on the normalized ink area-coverages, the normalized
area-coverages of the 8 cellular primaries are then found.
Along with the 8 subcube vertex reflectances these normalized
area-coverages are used in the YNSN equation (Equation 1)
to obtain the reflectance of the halftone.

Another important spectral prediction model is the two-by-
two dot-centering model [22], [23]. Instead of estimating the
effective area-coverage of different colorants in the halftone, it
takes into account all possible two-by-two pixel configurations
within a given halftone. The model then uses the YNSN
equation, with the primaries expressing the reflectances of each
two-by-two pattern and the weights expressing the relative
frequency of each corresponding pattern. For transparent inks,
the predictive two-by-two model [24] estimates the whole
calibration set using a measured subset of the two-by-two
calibration samples. This method achieves almost the same
accuracy as the original two-by-two model by requiring only
10% of two-by-two calibration samples.
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Fig. 1. (a) The subdivision of the unit cube that represents the area-coverages of cyan, magenta and yellow inks. (b) The area-coverages of the vertices of
one of the 8 subcube cells.

B. N-Ink Printer Models

An N-ink spectral prediction model predicts the spectra of
halftones made of maximum N inks. When the number of inks
grows, the size of the calibration set for the characterization
of the printer also grows, usually at an exponential rate. This
is the main challenge for N-ink spectral printer modelling.
A possible solution for the N-ink printer characterization is
the subgamut characterization [5]. Subgamut characterization
categorizes the inks into several groups each one with a
small number of inks. Each group (subgamuts) is separately
characterized. This leads to less calibration patches compared
with a full-blown N-ink printer model. However, there is not
a unique way for selecting the ink groups.

For example, consider an 8-ink printer. An 8-ink model
predicts the halftones formed by any number of different inks.
Subgamut characterization, instead, might form 4-ink subga-
muts and calibrate a 4-ink prediction model for each subgamut.
Although we usually choose a subset of the 70 possible 4-ink
groups to decrease the size of the calibration set, it is not clear
how to select the groups. The 4-ink subgamut characterization
is also not able to predict halftones formed by groups of 5 or
more inks. Because of the spectral redundancy of conventional
inks, groups of more than 4 inks don’t usually contribute to
the spectral variability. Nevertheless, combinations of a large
number of inks might improve other print attributes or become
necessary for printing with unconventional materials.

There have been a few efforts for characterizing an
N-ink printer. Taplin and Berns [1] establish a six-ink color
prediction model based on the independent ink-spreading
YNSN model. They limit the total area-coverage of halftones
to 300%. In another work, Chen et al. [2] use the cellular
YNSN model for a six-ink printer. For each single ink, they
find the two best cellular primary locations between 0% 100%
area-coverage. They also estimate the cellular primaries that
are not printable due to the total ink-limit. Bastani et al. [3]
also proposed an 8-ink cellular YNSN model. By limiting
the total area-coverage, they reduce the number of required
calibration samples. These models are all limited to classic
halftoning methods where the different ink layers are partially
superposed.

C. Spectral Prediction of Juxtaposed Halftones

The application of the nominal YNSN model for the spec-
tral prediction of N juxtaposed colorants is straightforward.

N spectrally measured colorants are sufficient for the cal-
ibration step. There is no established ink-spreading model
for juxtaposed halftoning that could compute the physical
dot-gain of the individual colorants and the extent of their
possible overlap. Existing ink-spreading models rely on the
statistically-independent superposition of ink layers. They are
therefore not applicable to juxtaposed halftones.

The two-by-two dot-centering spectral prediction
model [22] enables capturing the reflectance of slightly over-
lapping colorants and is therefore appropriate for predicting
the color of juxtaposed halftones. Babaei and Hersch [23] used
the two-by-two dot-centering model and its predictive coun-
terpart for the prediction of discrete-line juxtaposed halftones.
These models offer high prediction accuracies and outperform
the nominal YNSN model. However, the backward characteri-
zation of the two-by-two models is a very difficult problem [7].

The cellular YNSN is a popular spectral prediction model
for conventional halftones. In this paper, we propose to extend
the cellular YNSN model for N-colorant juxtaposed halftones.
The sum of area-coverage of inks in a juxtaposed halftone is
equal to 1. This implies that the cellular model for juxtaposed
halftones must be implemented in simplexes instead of easy-
to-manipulate cubes as in the case of conventional halftones.
The readers might find it useful to consult Appendix A where
we develop the necessary mathematical background for the
next section.

III. CELLULAR PREDICTION MODEL FOR

JUXTAPOSED HALFTONES

Similar to the cellular YNSN model for standard prints, the
domain of area-coverages of juxtaposed inks can be divided
into smaller subdomains. In a printing setup that allows the
superposition of inks, each ink’s area-coverage can take a value
in the interval [0, 1]. In a juxtaposed print, the sum of all
area-coverages should be equal to 1. From a geometric view-
point, when ink superposition is allowed the area-coverage
domain for N inks corresponds to an N-cube, i.e. a cube in
N dimensions. When the inks are juxtaposed, the area-
coverages of N inks correspond to an (N − 1)-dimensional
standard simplex. Figure 2 shows this interpretation for N = 2
and N = 3. For a two-ink print with ink superposition, the
domain of area coverage is the unit square, i.e. a 2-cube
(Figure 2a). The area-coverages of two juxtaposed inks
(e.g. a colored ink and paper) vary along a line segment,
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Fig. 2. The domain of area-coverages in superposition prints (left) and in
juxtaposed prints (right). The top row corresponds to a 2-ink print and the
bottom row to a 3-ink print.

i.e. a 1-simplex (Figure 2b). For three superposed inks, their
area coverages can take the values bounded by the unit cube
(Figure 2c). In juxtaposition, e.g. two colored inks and the
white paper, the area-coverage of three inks spans a triangle,
i.e. a 2-simplex (Figure 2d).

We must consider two questions when designing a cellular
prediction model for juxtaposed inks. The first question is
how to choose the location of new cellular primaries in the
area-coverage simplex. The second question is how to select
the subdomains within which the YNSN model interpolates
between cellular primaries. Concerning the first question,
there are two main considerations. First, we are interested
in the minimum number of cellular primaries. Second, the
new primaries in the cellular YNSN model must account
for the effects that are not captured by the nominal YNSN
model. Because of the dot gain, the borders of neighboring
colorants in a juxtaposed halftone are not perfectly separated
and produce effects that cannot be represented with single
colorants. Therefore, each ink-combination needs to be rep-
resented by a new primary. For a set of inks, the new cel-
lular primaries must represent all possible ink-juxtapositions.
As the domain of area-coverages of any set of juxtaposed inks
forms a simplex, we can set the barycenter of the original
simplex and the barycenter of each of its faces as cellular
primaries.

For example, consider a three-colorant juxtaposed print
formed by three colorants, e.g. white paper, cyan and magenta
(Figure 3). One cellular primary included in all subdivisions
is the barycenter of the three vertices (p012). We also consider
the barycenters of all two and one-ink faces of the simplex
as other cellular primaries. This results in 1 three-colorant
barycenter plus 3 two-colorant barycenters which together
with the 3 colorant-vertices (barycenters of 0-faces) yield
7 cellular primaries. Similarly, for an N-ink juxtaposed system
that forms an (N − 1)-simplex, using the binominal theorem,
we can verify that this approach requires(

N
1

)
+

(
N
2

)
+ · · · +

(
N
N

)
= 2N − 1 (2)

Fig. 3. Locations of the cellular primaries in a 3-ink juxtaposed print. For
3 inks, we need 7 cellular primaries. In parentheses, we give an example with
colorants cyan, magenta and white.

Fig. 4. A single point can be interpolated within regions defined by different
cellular primaries. The RMS prediction error is given for the printer described
in Section IV.

cellular primaries among which

(
N
1

)
= N primaries are the

ink-vertices.
Having selected the cellular primaries, the second question

was how to choose the subdomains within which the YNSN
model interpolates between cellular primaries. Given a test
point, the answer is straightforward for the cellular YNSN
model for standard prints: we choose the smallest subcube that
includes the test halftone (see Figure 1). In cellular simplexes,
however there is not a unique way of choosing a subdomain.
In a simple experiment with only 3 inks, Figure 4 shows a
point that represents a halftone of cyan (37%), magenta (22%)
and red (41%) inks. As can be seen, a point inside a cellular
subdivided triangle can be interpolated within different subdo-
mains. The reproduction accuracy depends on the interpolation
region. To compare, we estimate the reflectance of this point
by linearly interpolating within different regions, each one
defined by different cellular primaries. The RMS error between
the predictions and the measured reflectance is shown in
Figure 4.

The cellular subdivisions according to
Figure 4(c), (d) and (e) give the largest interpolation
errors. They all use cells that have large areas compared
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Fig. 5. A single point x with barycentric coordinates tr ≥ tc ≥ tm has to
be interpolated within the corresponding highlighted subsimplex defined by
cellular primaries r, cr and cmr.

to the cells in (a) and (b). Moreover, Figure 4 (c) uses
4 primaries and Figure 4 (e) does not use the three-ink
barycenter primary.

One reasonable option is to find the smallest subdomain
that circumscribes the test point, similar to Figure 4 (b).
However, this point-location problem is known to be very
computationally expensive in high dimensions [25]. As it
must compute the colors of millions of halftones, a forward
prediction model should be fast. We are therefore interested in
a subdivision that: i) assigns a subdomain to any test point of
any dimension quickly and without ambiguity, ii) ensures that
subdomains have small areas, and iii) includes the barycenter
of N ink-vertices (unlike Figure 4 (e)).

The first barycentric subdivision of a standard simplex
(Appendix A) provides us with such desired properties. For
three juxtaposed inks, Figure 4 (a) corresponds to this subdi-
vision. As stated in the Appendix, the barycentric subdivision
divides a q-simplex (i.e. a simplex with q + 1 vertices) into
a family of (q + 1)! q-subsimplexes (see Figures 10 and 11).
Let us review the algorithm for finding the subsimplex cir-
cumscribing a given point within a subdivided simplex. This
algorithm is a direct result of Corollary 1 in Appendix A.
We carry out the following steps:

(i) Input are t0, t1, . . . tq , the barycentric coordinates of
point x relative to the simplex vertices p0, p1, . . . , pq . Hence,
x = t0 p0 + t1 p1 + . . . + tq pq . In our color prediction
framework, t0, t1, . . . tq are the nominal area coverages of
the halftone x. Also, p0, p1, … pq correspond to the area
coverages of the q + 1 fulltone colorants (colorants with area
coverages equal to one).

(ii) Order the barycentric coordinates, such that
ti0 ≥ ti1 ≥ . . . ≥ tiq .

(iii) The cellular primaries are:
pi0 , barycenter of the 0-face of pi0 ,
pi0 i1 , barycenter of the 1-face of pi0 pi1 ,
…
pi0 i1...iq , barycenter of the q-face of the simplex, i.e.
the barycenter of the initial simplex pi0 pi1 . . . piq .

Using this algorithm, given the barycentric coordinates rel-
ative to the vertices of the original simplex, the circumscribing
subsimplex is found quickly. Computationally, it is as fast
as sorting the vector of area-coverages of the test halftone.
Consider for example Figure 5 that is a more detailed instance

of Figure 4 (a). Recall that the test point shown at position x
is a halftone of cyan (37%), magenta (22%) and red (41%)
inks. From Corollary 1 (i) of the Appendix, we know that
the 2-simplex cmr can be divided into 3! 2-subsimplexes,
each characterized by a double inequality. The inequality
tr ≥ tc ≥ tm characterizes the highlighted subsimplex that
encompasses the halftone x, where tr = 0.41, tc = 0.37 and
tm = 0.22 are the barycentric coordinates of point x with
respect to the cmr simplex, i.e. x = trr + tcc + tmm. With
the algorithm described above, we find the cellular primary
vertices of the circumscribing subsimplex to x, i.e. r (pi0 ),
cr (pi0 i1 ) and cmr (pi0 i1i2 ) in the present example.

The area-coverage of a juxtaposed halftone represents
its barycentric coordinates relative to the vertices of the
original simplex built by the contributing inks. In order to
predict the reflectance of a juxtaposed halftone using the
cellular YNSN model, we must calculate its new barycentric
coordinates relative to its circumscribing subsimplex. These
new barycentric coordinates are then used as weights in the
Yule-Nielsen equation (areas ai in Equation 1).

Finding the barycentric coordinates inside arbitrary shapes
even in 2D can be ambiguous [26]. Thanks to the barycentric
subdivision, after the subdivision, every point is inside a
(sub)-simplex. Calculating the barycentric coordinates of a
point inside a simplex is straightforward. We can construct
barycentric coordinates in any dimensions using fractions of
hypervolumes. In order to compute the barycentric coordinate
of a given point p relative to a certain vertex x, we can
compute the ratio of the hypervolume of the simplex oppo-
site to x, and the hypervolume of the whole circumscribing
simplex [27]. The simplex opposite to x is defined by the
point p and all circumscribing simplex points but x.

A test point inside an N-simplex forms an N-simplex with
any set of (N − 1) vertices of that simplex. The barycentric
coordinates are therefore the ratios of the unsigned hypervol-
umes of two N-simplexes. The unsigned volume of a simplex
of any dimension is [28]

V =
∣∣∣∣ 1

q!det[p1 − p0, p2 − p0, · · · , pq − p0]
∣∣∣∣ (3)

where p0, p1, . . . , pq are q-vectors, that yield a square matrix
for determinant calculation. Figure 6 shows a 2D example
where a juxtaposed 3-ink halftone is represented with area-
coverage vector t (c, m, y). The barycentric coordinates
relative to c, m and y vertices, i.e. c, m and y, are equal
to the areas of the sub-triangles opposite to c, m and y,
i.e. mty, cty and ctm, respectively, normalized by the area
of the simplex cmy.

IV. RESULTS

In this section, we predict the reflectances of printed
samples made of juxtaposed ink-halftones using the nomi-
nal YNSN and the cellular simplex models. The juxtaposed
halftoning method enables us to directly set the amount of any
number of input inks. The assigned ink-amounts are halftoned
with the discrete-line juxtaposed halftoning algorithm (see
Figure 7). The screen is a 1D superscreen [7], [29] with two
subscreens of rational periods T1 = 46/7 and T2 = 45/7
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TABLE I

PREDICTION ACCURACY OF THE NOMINAL AND CELLULAR SIMPLEX YNSN MODELS FOR 247 TEST JUXTAPOSED-HALFTONES PRINTED
WITH A CANON PIXMA Pro9500 AT 600 dpi, USING CYAN, MAGENTA, YELLOW, RED, GREEN, GRAY INKS AND THE WHITE PAPER

Fig. 6. The area-coverage of the halftone represented with the vector
t (c, m, y) is equal to the relative area of the three opposite-side sub-triangles.

Fig. 7. Discrete-line juxtaposed halftoning: a simple example of a
screen comprising four colorants with different area-coverages: cyan 25%,
magenta 20%, yellow 25% and white 30%. Two instances of the parallelogram
screen-element are shown with a solid line. Here the vertical period T
is 4 and the line slope is 2/5.

resulting in 92 intensity levels with a line slope of 4/7.
We use the Canon Pixma Pro9500 inkjet printer at 600 dpi
with a maximal drop-size and the Canon MP-101 paper for
all experiments. The corresponding solid cyan, magenta and
yellow densities are 1.05, 0.80 and 1.11, respectively according
to the DIN 16536-2 density standard.

Although the inks are transparent, we don’t allow them
to overlap. Hence, each ink is a separate colorant. We use
7 out of the 10 available ink-cartridges for the printer, namely
cyan, magenta, yellow, black, red, green and gray which
along with the white paper form an 8-colorant juxtaposed
system. We measure the spectral reflectances with a Datacolor
MF45 spectrophotometer having a 0°:45° measuring geometry.
The reflectance spectra comprise discrete wavelengths from
380 to 730 nm in 10 nm intervals. Therefore, each halftone
reflectance is represented by a 36-vector.

According to Equation 5, the calibration set of the cellu-
lar YNSN model is composed of 28 − 1(= 255) halftone

reflectances among which

(
8
1

)
= 8 calibration samples are

the inks at their full area-coverages,

(
8
2

)
= 28 calibration

samples are all different 2-ink halftones where both inks have

equal area-coverages,

(
8
3

)
= 56 calibration samples are all

different 3-ink halftones with equal area-coverages and so
forth. For the nominal YNSN model calibration, 8 colorants
at their full area-coverage are printed and measured.

We design a test set comprising a number of halftones to be
measured and compared with the predicted spectra resulting
from both the nominal and cellular simplex YNSN models.
We include all possible ink-combinations in the test set.
We include one test-halftone with random area-coverage for
each combination instance. For example, as there are 28 differ-
ent two-ink combinations, we include 28 two-ink test halftones
with the area-coverages of the two inks selected on a ran-
dom basis. This approach yields a test set of 247 samples,
i.e. 255 samples, one per ink combinations, minus the 8 single
colorants. We verified that these 247 samples are well distrib-
uted in the color space.

As explained earlier, given the area coverage of a test
halftone, we first find the primaries that circumscribe that
halftone according to the algorithm described in the previ-
ous section. This is performed by sorting the area-coverage
vector of the test halftone. We then calculate the barycentric
coordinates of the test halftone relative to these primaries
and use them in Equation 1 to predict the reflectance. For
example, suppose we have a 7-ink test halftone with area
coverage vector a (c, m, y, r, g, w, k), assuming c ≥ m ≥
y ≥ r ≥ g ≥ w ≥ k. We know that this point is inside one
of 7! (= 5040) 6-subsimplexes resulting from the barycentric
subdivision. The vertices of the circumscribing 6-subsimplex
are the barycenters of: c, cm, cmy, cmyr, cmyrg, cmyrgw
and cmyrgwk simplexes, i.e. they are formed by halftones
with equal amounts of these ink-combinations. These vertices
form the cellular primaries that are used for predicting the
reflectance spectrum and therefore the color of the considered
test halftone.

Table I shows the prediction accuracy of the nominal YNSN,
cellular simplex YNSN, the two-by-two dot centering and the
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Fig. 8. The �E94 color prediction error for a number of 3-ink halftones
predicted with the cellular simplex YNSN. The test halftones are shown
with filled circles color-coded according to the prediction accuracy error. The
location of the measured calibration samples is also shown with black shapes:
The fulltone inks are shown with squares, the two-ink cellular primaries are
shown with triangles and the 3-ink cellular primary is shown with the nabla
symbol. The choice of inks is arbitrary.

predictive two-by-two model using 100 effectively measured
calibration samples. Note that the n-values shown in Table I
are optimized to give the minimum average �E94 color-
difference between the measured test-halftones and their pre-
dicted counterparts. We allowed the n-value to vary between
−10 to 10 with 0.1 increments. Values greater than 10 or less
than −10 do not change the results significantly [30].

As it can be seen from Table I, the cellular YNSN model
with barycentric subdivision offers significantly more accu-
rate predictions than the YNSN model with nominal area
coverages. The nominal YNSN model prediction is already
quite accurate. This indicates that the printer is successful
in placing halftone dots with effective area-coverages close
to nominal area-coverages. The N-ink cellular YNSN model
offers a prediction accuracy close to the accuracy obtained by
the original two-by-two model with four times less calibration
patches and an accuracy slightly higher than the predictive
two-by-two model, but with 2.5 times the number of cali-
bration patches. In Figure 8, we show the color prediction
accuracy of the cellular simplex model for a number of
3-ink juxtaposed halftones depending on their locations in a
2D subdivided simplex.

V. CONCLUSIONS

In this work, we have presented a new spectral prediction
model for N-ink prints made of juxtaposed halftones.
It borrows the concept of the cellular subdivision of the ink
area-coverage domain which has already been successfully
used to predict the color of classic prints. As the domain
of the ink area-coverage of juxtaposed halftones forms
a simplex, the main challenge resides in determining
the location of cellular primary reflectances as well as
appropriately subdividing the simplex into subdomains such
that the barycentric weights of the primary reflectances can
be unambiguously calculated. We have shown that the first
barycentric subdivision of simplexes efficiently samples the
ink space and offers computationally efficient solutions to
find the proper subdomain for each test halftone. The number

of calibration samples raises exponentially with the number
of inks, but with a modest base of 2. The experiments have
shown that the proposed model can predict all combinations
of 8-ink prints with a colorimetric accuracy superior to the
nominal YNSN model, very close to the prediction accuracy
offered by the two-by-two dot-centering model.

In the future, we can explore other subdivision strategies.
A further subdivision of an already subdivided simplex might
increase the prediction accuracy. We can also consider an
adaptive subdivision strategy where subsimplexes with lower
prediction accuracy are further subdivided.

We expect that the barycentric subdivision of the ink space
will be advantageous for printing with unconventional inks,
such as metallic or iridescent inks. It can also be useful in
predicting other appearance attributes, such as spatially vary-
ing BRDFs [31]. Given the fact that any material mixture, e.g.
multi-material 3D prints, can be represented with simplexes,
we believe this method can find applications beyond color or
appearance reproduction.

APPENDIX

MATHEMATICAL BACKGROUND

In this section, we review the necessary mathematical
background for building the spectral prediction model for
N juxtaposed inks. More detailed explanations can be found
in almost every standard textbook on Algebraic Topology, see
for example [32], [33].

Definition 1: The points p0, p1, . . . , pq in Rk forming an
ordered set are geometrically independent (or affine indepen-
dent) if p1 −p0, p2 −p0, . . . , pq −p0 is a linearly independent
subset of Rk .

Definition 2: Let p0, p1, . . . , pq be geometrically indepen-
dent points of Rk . The convex set spanned by these points is a
q-simplex (σ q) in Rk and the points p0, p1, . . . , pq are called
the vertices of the simplex.

The parameter q is referred to as the dimension of the
simplex.

A simplex is called a standard simplex if its vertices are the
points

p0 = (1, 0, 0, · · · , 0)

p1 = (0, 1, 0, · · · , 0)
...

pq = (0, 0, 0, · · · , 1). (4)

The face of a simplex is a simplex whose vertices are a
subset of the vertices of the original simplex. If the simplex τ
is a face of simplex σ but not equal to σ , we call τ a proper
face of σ and denote it by τ < σ . Vertices of the simplex are
its 0-faces, its edges are its 1-faces. The (q − 1)-faces of a
q-simplex are called the facets of the simplex.

Figure 9 shows examples for the first three simplexes.
A 0-simplex and a 1-simplex in Euclidean space Rk are
simply a point and a line-segment in that space, respectively.
A 2-simplex and a 3-simplex are a triangle and a tetrahedron
in Rk where k is at least 2 and 3, respectively.



 
8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 9. The 0, 1 and 2-dimensional simplexes correspond to a point, a line
segment and a triangle, respectively.

Fig. 10. The barycentric subdivision of a 1 and 2-simplex. Note that the
barycenter of the original simplex (p01 and p012 for the line segment and the
triangle, respectively) is included in all subdivided simplexes.

Definition 3: For any point x in a q-simplex, there exists a
unique (q + 1)-tuple of real numbers (t0, t1, …, tq) called the
barycentric coordinates of x relative to the simplex vertices
p0, p1, . . . , pq where⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x =

q∑
j=0

t j p j : 0 ≤ t j ≤ 1

for j = 0, 1, . . . , q and
q∑

j=0
t j = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5)

Definition 4: The barycenter of a q-simplex σ with vertices
p0, p1, . . . , pq , denoted by bσ , is defined as

bσ = 1

q + 1
(p0 + p1 + · · · + pq). (6)

Definition 5: The first barycentric subdivision of a
q-simplex σ q is a family of q-simplexes defined inductively
for q ≥ 0:

(i) the barycentric subdivision of a 0-simplex is a 0-simplex.
(ii) if ϕ0, ϕ1, . . . , ϕq+1 are the facets of a (q + 1)-simplex

σ q+1 and if bσ is the barycenter of σ q+1, then the barycentric
subdivision of the σ q+1 consists of all (q + 1)-simplexes
spanned by bσ and by q-simplexes resulting from the barycen-
tric subdivision of ϕi (i = 0, 1, . . . , q + 1).

Figure 10 shows an example of the barycentric subdivision.
On the left, the barycentric subdivision of a 1-simplex line-
segment gives two smaller line-segments both with one vertex
and the barycenter of the original 1-simplex. On the right, we
show the barycentric subdivision of a 2-simplex. Following
Definition 5, the 2-simplex has three 1-simplex facets, i.e. line
segments p0p1 p1p2 and p2p0. The barycentric subdivision
of this triangle consists of all possible triangles spanned by
the simplex barycenter, i.e. p012 and the 1-simplexes resulting
from the subdivision of all 1-simplex facets, i.e. p0p01, p1p01,

Fig. 11. The barycentric subdivision of a 3-simplex, p0p1p2p3. The
barycenter of the 3-simplex, i.e. p0123 is marked with a dot. The 3-simplex
has 4 facets: p0p1p3, p0p2p3, p0p1p2 and p1p2p3. The subdivision
produces 24 3-subsimplexes, two of which are p0p02p023p0123 and
p0p03p023p0123, for example.

p1p12, p2p12, p2p02 and p0p02. In Figure 11 we show the
barycentric subdivision of a 3-simplex, i.e. a tetrahedron in
3-dimensional space.

The following corollary from the definition of barycentric
subdivision is of particular interest. It can be found in the
form of an exercise, for example in [32, Exercise 6.6] or in
[33, Sec. 2.1, Exercise 24].

Corollary 1: (i) Each q-simplex resulting from the barycen-
tric subdivision of a q-simplex σ is defined by q inequalities
ti0 ≤ ti1 ≤ . . . ≤ tiq where ti0 , ti1 , . . . , tiq are the barycentric
coordinates relative to σ and (i0, i1, · · · , iq) is a permutation
of (0, 1, · · · , q).

(ii) Moreover, every q-simplex of a barycentric subdivision
has the vertices bσ0, bσ1, . . . , bσq , where each σ i is an i -face
of σ and σ0 < σ1 < . . . < σq (recall τ < σ indicates that τ is
a proper face of σ ). The order of σi s in the inequality depends
on the order of the barycentric coordinates (ti0 , ti1 , . . . , tiq ).

Proof: See [34] for an extensive proof.
The first part of Corollary 1 determines the distinct sub-

simplexes after the barycentric subdivisions expressed as a
function of their barycentric coordinates. It shows that the
barycentric subdivision of a q-simplex gives exactly (q + 1)!
q-simplexes. We can verify this in Figures 10 and 11 where
the barycentric subdivision of a 1, 2 or 3-simplex gives 2, 6
or 24 1-, 2- or 3-simplexes, respectively.

The second part of Corollary 1 determines the
circumscribing vertices of each subsimplex. Figure 12
illustrates Corollary 1 for a 2-simplex. The 6 subdivided
2-simplexes with barycentric subdivision are characterized
with 6 double inequalities. We can list the vertices of each
subdivided simplex easily with the help of part (ii) of the
corollary. For example, the subdivided triangle characterized
by inequality t0 ≥ t1 ≥ t2 has the vertices p0, p01 and p012.
Note that, following Corollary 1 part (ii), p0 is the barycenter
of the 0-face p0 that is the vertex corresponding to the
largest element in the barycentric coordinate (t0), p01 is the
barycenter of the 1-face p0p1 formed by the two vertices
corresponding to the two larger elements of the barycentric
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Fig. 12. Characterization of each subdivided simplex using the inequalities
of the barycentric coordinates.

coordinate (t0 and t1) and p012 is the barycenter of the 2-face
of simplex p0p1p2, which is the simplex p0p1p2 itself.
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