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Fig. 1. We propose a highly accelerated approach for discovering the gamut of different design processes. Our method is capable of taking and proposing an
extremely large batch of samples at each of its iterations while exploring the design space. In this teaser, we compare the performance of random sampling,
NSGA-II (a stochastic multi-objective optimization), and our LBN-MOBO method in identifying the reachable space of a soft robot’s tip. All methods operate
under the same computational budget of 4 iterations, each with a batch size of 1,000 samples. Our method significantly outperforms existing approaches in

both coverage and efficiency.

This paper presents a scalable framework for efficiently discovering the
performance gamut of different processes. Gamut boundaries comprise the
set of highest-performing solutions within a design space. While sampling
methods are often inefficient or prone to premature convergence, Bayesian
optimization struggles with taking advantage of existing large-scale parallel
computation or experimentation. To address these challenges, we utilize
Bayesian neural networks as scalable surrogates for performance prediction
and uncertainty estimation. We further introduce a novel acquisition func-
tion that combines the diversity-driven exploration of stochastic optimiza-
tion with the information-efficient exploitation of Bayesian optimization.
This enables generating large, high-quality batches of samples. Our approach
leverages large batch sizes to reduce the number of iterations needed for
optimization. We demonstrate its effectiveness on real-world engineering
and robotic problems, achieving faster and more extensive discovery of
the performance gamut. Code and data are available at https://gitlab.mpi-
klsb.mpg.de/nansari/lbn_mobo.
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1 INTRODUCTION

In many engineering fields, such as computational design and ro-
botics, we often encounter a key question: What is the performance
gamut of a particular design process, robot, or fabrication hardware?
This gamut determines the limits of achievable performance of the
corresponding process. Having access to the performance gamut is
extremely valuable. Most importantly, the gamut draws a boundary
between feasible and infeasible. For example, the gamut determines
whether a particular printer with its set of inks is capable of re-
producing a certain appearance. It also has safety implications; for
example it reveals whether a robot can potentially reach a particu-
lar location. Additionally, having access to the gamut allows us to
create representative datasets for different data-driven applications.

A straightforward solution for gamut discovery is to sample the
design space of the underlying native forward process (NFP) and
evaluate the performance. This strategy works for NFPs with a
low-dimensional design space but would fail when faced with com-
plex, high-dimensional problems. Bayesian optimization (BO) is a
significantly more efficient way of finding the gamut boundaries.
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Treating the NFP as a black box, BO finds gamut boundaries through
optimizing for multiple performances that define the gamut. BO
uses a surrogate for the NFP and guides sample selection via an
acquisition function (AF). Unfortunately, the BO literature almost
exclusively focuses on using the least number of NFP evaluations,
favoring small batches (typically only one sample) and many itera-
tions. This is while advances in high-performance computing as well
as experimentation and measurement hardware provide unprece-
dented parallel processing capabilities. In many cases, simulating
(or measuring) the performance of thousands of samples in parallel
is almost as feasible as evaluating a single sample. Therefore, the
bottleneck of the process of optimization shifts from the number of
NFP evaluations toward the number of iterations. To our surprise,
the literature does not offer a BO method capable of working with
large batches (and consequently small iterations).

In this paper, we propose a method of gamut discovery through
a novel Bayesian optimization which is capable of working with
extremely large batches. Particularly, we address two bottlenecks
that hinder the scalability of traditional BO approaches: surrogate
scalability and acquisition function scalability. First, standard surro-
gate models struggle to scale with large batch sizes. We address this
by using Bayesian neural networks (BNNs), which offer scalability
and built-in uncertainty estimation to enhance exploration. Second,
existing acquisition functions for multi-objective batch optimization
fail when handling large batches (e.g., >1000 samples). We propose
a novel 2MD acquisition function that efficiently generates diverse,
high-quality samples by combining the diversity-driven exploration
of NSGA-II, a stochastic multi-objective optimization [Deb et al.
2002], with the information-efficient exploitation of BO. Our key
contributions are:

o Leveraging modern parallel computing and experimentation
to accelerate gamut discovery.

e Introducing a novel, highly scalable acquisition function that
balances exploration and exploitation efficiently for extremely
large batches of samples.

o A detailed analysis of neural surrogate models and identifying
the most scalable options for large-batch optimization.

¢ Demonstrating the effectiveness of our method in discovering
gamut boundaries across a range of real-world design and
robotics problems.

2 RELATED WORK

Functional Fabrication and Gamut. A crucial goal of computa-
tional design and fabrication is to transform functional objectives or
performance requirements into manufacturable designs [Bermano
et al. 2017]. We call the complete range of achievable performances
within the functional fabrication problem gamut [Smith 1978]. The
concept of the gamut has been widely applied in fabrication prob-
lems, such as using the spectral reflectance gamut of 3D printers to
create illumination-invariant reproductions of paintings [Shi et al.
2018], investigating advanced LED technologies for improved dis-
play color gamuts [Ren et al. 2024], and exploring microstructures
to expand the gamut of physical properties, including thermal, elec-
trical, and magnetic profiles [Chen et al. 2018]. Makatura [2020]
introduce Pareto gamuts, which capture Pareto fronts over a range
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of contexts in multi-objective optimization problems. They develop a
global-local optimization algorithm to discover the Pareto gamut di-
rectly, facilitating the exploration of optimal designs across varying
scenarios. In this work, we aim to accelerate gamut discovery in com-
plex systems by leveraging the ever-increasing parallelization. This
parallelization is occurring in both computer simulations, thanks to
the increased computational power with more CPU and GPU cores,
and real-world experimentation, thanks to, e.g., autonomous mate-
rials science labs [Szymanski et al. 2023]. Our proposed algorithm
fully utilizes these parallelization capabilities, enabling a faster and
more efficient gamut discovery procedure.

Pareto Front. Pareto front is closely related to the concept of
gamut in multi-objective problems. While the gamut represents all
achievable results within a system, the Pareto front defines the set
of optimal solutions, where no objective can be improved without
compromising another [Van Veldhuizen et al. 1998]. In essence, the
Pareto front represents the boundaries of the gamut. Cibulski et al.
[2020] developed an interactive Pareto front visualization tool for
multi-objective engineering design, aiding engineers in leveraging
their expertise during the functional fabrication process. Suresh
[2013] solved large-scale 3D topology optimization, efficiently gen-
erating Pareto-optimal solutions in complex domains with millions
of degrees of freedom. In this work, we discover the gamut by find-
ing the gamut boundaries in all directions of the performance space.

Multi-Objective Optimization (MOO). Multi-objective optimiza-
tion is key to Pareto front and gamut discovery. It involves solving
for optimal trade-offs between performance metrics. Various meth-
ods have been developed to address these types of problems. The
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al.
2002] is a widely adopted method for MOO, particularly in scenarios
where the Native Forward Process (NFP) is treated as a black-box
function. NSGA-II’s Pareto-front ranking and diversity-preserving
mechanisms effectively balance convergence and exploration, mak-
ing it applicable across a wide range of problems. However, NSGA-II
requires numerous NFP evaluations, leading to high computational
costs for problems with high-dimensional spaces or expensive objec-
tive functions [Konakovic Lukovic et al. 2020]. This limitation, along
with its susceptibility to local optima, underscores the need for more
efficient approaches to gamut discovery. Schulz et al. [2018] intro-
duced a first-order approximation method for discovering and navi-
gating the Pareto front, representing trade-offs as smooth patches.
This approach enables efficient exploration of design trade-offs,
particularly in CAD models.

Bayesian Optimization (BO). Bayesian Optimization [Jones et al.
1998] is a powerful method for optimizing expensive functions
with minimal NFP evaluations. Multi-objective extensions, such
as Expected Hypervolume Improvement (EHVI) [Emmerich et al.
2005] and batch methods like parallel Expected Hypervolume Im-
provement (QEHVI) and parallel Noisy Expected Hypervolume Im-
provement (QNEHVI) [Daulton et al. 2020, 2021], offer effective
tools for exploring Pareto fronts. However, these approaches face
scalability challenges [Springenberg et al. 2016], particularly when



handling batch sizes exceeding 1000 samples—a critical require-
ment for modern gamut discovery tasks. To address these limita-
tions, Konakovic Lukovic et al. [2020] introduced a multi-objective
Bayesian optimization algorithm designed for parallel evaluation.
By a piecewise-continuous approximation of the Pareto set, this
method balances hypervolume improvement and diversity in sample
selection, greatly enhancing the efficiency of Pareto front discovery
and accelerating multi-objective optimization.

To further improve scalability, neural networks have been pro-
posed to replace traditional Gaussian Processes (GPs) in BO. Bayesian
neural networks (BNNs) [Arbel et al. 2023] like Deep Kernel Learn-
ing (DKL) [Wilson et al. 2016], Infinite Width Bayesian neural net-
works (IBNNs) [Lee et al. 2017] and techniques like Stochastic Gra-
dient Hamiltonian Monte Carlo (HMC) [Chen et al. 2014] provide
scalable surrogation in high-dimensional design spaces. Approxima-
tive Bayesian models like Deep Ensembles [Lakshminarayanan et al.
2016], and Monte Carlo Dropout (MC Dropout) [Gal and Ghahra-
mani 2016] further enhance the scalability of surrogates.

Despite improvements in surrogate modeling, designing appro-
priate acquisition functions, whose role is to propose new samples
at each iteration of BO, remains a more critical bottleneck in scaling
BO for gamut discovery. Methods such as gEHVI, gParEGO [Knowles
2006], and gNEHVT struggle with computational complexity, partic-
ularly for large batch sizes or high-dimensional problems (Section
B.2). In this work, we propose a novel acquisition function that,
when combined with a scalable surrogate model, enables multi-
objective Bayesian optimizations to efficiently handle batch sizes
exceeding 10,000 samples. More details and experiments on classical
multi-objective batch capable Bayesian optimizations are provided
in Sections A and B of the supplementary materials.

3 BACKGROUND

In computational design, the gamut G represents the full range of
achievable performances within a feasible design space. The gamut
boundary G defines the outer limits of this space, consisting of
the highest-performing solutions that cannot be improved in one
objective without sacrificing performance in another. This definition
is closely related to Pareto front P.

Formally, let X € RN be the design space and Y € RM be the
performance space with M objectives. Let f : X — Y be the
underlying NFP mapping from a design x € X to its performance
y = f(x). Asolution y! = f(x!) is said to dominate another solution
y? = f(x?) in a minimization problem, y < y?, if:

Vie{lL...M}, yl<u} and Fje{i..M} yl<il

This means for every component i, the value of y} is smaller than
or equal to the corresponding value of yiz, Additionally, there ex-
ists at least one component j where y} is strictly smaller than y?.
The Pareto front # is then defined as:

OPiy 0% e
P={yeV|B eV v <y}. ,° *IP:
This means the Pareto front £ con- .. e o
sists of all solutions y in the perfor- ® e o
8734 ° B/Py

mance space Y that are not strictly ° 4
dominated by any other solution y’ in ¢
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Y. In practice, we compute the Pareto front for each of the 2™ or-
thants in an M-dimensional performance space and aggregate them
to obtain the gamut boundary 9G:

ZM
9G = Z P;.
i=1

Identifying the gamut boundary is critical for understanding the
true limits of achievable performance. However, due to the high
dimensionality of the design space and the significant computa-
tional cost of evaluating solutions using Native Forward Processes
(NFPs), discovering the gamut boundary remains a challenging task
[Skouras et al. 2012; Bacher et al. 2012].

A straightforward yet inefficient method for discovering the
gamut boundary is random sampling, where we exploit all available
resources to generate as many candidate solutions as possible in the
hope of finding the high-performing ones (the top plot in the inset
figure). However, due to the large size of the design space, random
sampling is computationally expensive and slow to converge.

To address the inefficiencies of random sampling, Genetic Al-
gorithm (GA), especially its well-known multi-objective extension
NSGA-II, provides a guided, evolutionary approach for discover-
ing gamut boundaries. Inspired by natural selection, NSGA-II [Deb
et al. 2002] begins with a population of random solutions, evaluates
their performance, and evolves the population through selection,
recombination, and mutation over multiple iterations (middle plot
in the inset figure). Two key mechanisms make NSGA-II effective:

e Non-dominated Sorting: So-
lutions are ranked into gamut
boundaries based on dominance.
The first front contains solu-
tions that are not dominated by
any others, while subsequent
fronts contain solutions domi-
nated only by those in earlier
fronts.

Crowding Distance: To main-
tain diversity along the gamut
boundary, NSGA-II favors solu-
tions that are well spread out,
preventing clustering and en-
suring uniform coverage of the
gamut boundary.

While NSGA-II efficiently balances
convergence and diversity, it can still suffer from premature conver-
gence if the initial population lacks variety or diversity diminishes
over generations.

To mitigate the risk of local minima and leverage gathered data
more intelligently, Bayesian optimization (BO) has emerged as an
effective alternative. BO replaces the computationally expensive
Native Forward Process (NFP) with a surrogate model f (x) that
approximates the objective function based on previously evaluated
data points. This surrogate model enables more efficient exploration
of the design space by reducing the need for direct NFP evaluations
(bottom plot in the inset figure).

. |ter 2

Iter 1--

Iter Q-
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A key component of BO is the acquisition function (AF), which
intelligently selects the next candidate solutions by balancing two
goals:

e Exploration: Sampling regions where the surrogate model
has high uncertainty to investigate under-explored areas of
the design space.

o Exploitation: Prioritizing regions where the surrogate model
predicts high performance to refine promising areas.

Traditional BO commonly uses Gaussian Processes (GPs) as sur-
rogate models due to their ability to quantify uncertainty via the
predictive mean f (x) and standard deviation o(x).

One widely used acquisition function in traditional BO is the
Upper Confidence Bound (UCB) [Auer 2002]. UCB formalizes the
trade-off between exploration and exploitation by using a weighted
combination of the surrogate model’s predictive mean and uncer-
tainty. The UCB acquisition function is defined as:

UCB(x) = f(x) + ko (x), (1)

where f (x) is the predicted mean, o(x) is the predicted standard
deviation, and «k is a parameter that controls the trade-off between
exploration and exploitation. The next candidate sample xpext is
determined by maximizing the acquisition function:

Xnext = arg max UCB(x).
xeX

The goal is to identify the most promising samples in each iteration,
minimizing the number of expensive NFP queries needed to reach
the optimal solution. The strength of UCB lies in its simplicity and
flexibility, allowing the user to adjust x to emphasize exploration or
exploitation based on the problem requirements.

While BO is highly effective for optimizing functions with limited
evaluations, it struggles in modern setups where large-scale paral-
lelization allows tens of thousands of candidates to be evaluated
simultaneously. Two major limitations arise:

o Surrogate scalability: Traditional surrogate models are not
designed to scale efficiently with large batches of data.

e Acquisition function scalability: Existing acquisition func-
tions fail to propose large, diverse batches of candidates ef-
fectively.

To address surrogate scalability, Bayesian neural networks offer
a viable solution. Unlike standard neural networks, BNNs provide
uncertainty estimation, which is critical for guiding the exploration.
Among the various BNN approaches, Deep Ensembles [Lakshmi-
narayanan et al. 2016] have demonstrated scalability and reliability,
as they combine predictions from multiple independently trained
neural networks to estimate both performance and uncertainty.

To overcome acquisition function limitations, we introduce a
scalable acquisition function that integrates the diversity-driven
exploration of NSGA-II with the information-efficient exploitation
of BO. This hybrid approach leverages BNN surrogates to propose
diverse, high-quality candidate batches, making full use of modern
parallel computing infrastructure.

Combining NSGA-II's diversity-preserving mechanisms with the
intelligent exploration-exploitation trade-off of Bayesian optimiza-
tion provides a powerful framework for discovering gamut bound-
aries. In Section 5, we demonstrate how our approach accelerates
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convergence in real-world gamut discovery problems by exploiting
highly parallelized environments.

4 METHOD: LARGE-BATCH NEURAL
MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Our method, abbreviated as LBN-MOBO, works based on a simi-
lar principle to traditional BO but is devised to achieve scalability.
LBN-MOBO begins with a random sampling of the design space
Us(X) of the given NFP (®). Subsequently, it fits an approximation
of a Bayesian neural network surrogate fgnn to the randomly sam-
pled dataset X°. The Bayesian neural network fgnn is capable of
fitting to large data batches. Additionally, fgn N, and particularly its
approximation through Deep Ensembles (DE) [Lakshminarayanan
et al. 2016], enables computing predictive uncertainties (Fs(x)) in
a fully parallelized manner (Section 4.1). Upon training fgnN, we
utilize our novel acquisition function (Ag) to compute the next batch
of candidates. This function strategically balances exploitation of
promising regions and exploration of under-represented areas in the
design space (Section 4.2).

We evaluate the candidate batch using the NFP, append the results
to our dataset, and utilize the updated dataset to retrain the BNN
for the next generation.

Figure 2 illustrates the stages of the LBN-MOBO algorithm using
an NFP with two objectives as an example. Note that some of the
candidates may not lie on the Pareto front of the NFP (indicated by
the red regions). This highlights the exploratory property of LBN-
MOBQO, as these candidates are still retained in the dataset. Their
inclusion contributes to enhancing the information captured by
NN and reduces its uncertainty level (Fy (x)). Algorithm 1 provides
a concise summary of all the steps of LBN-MOBO.

ALGORITHM 1: Large-batch, neural multi-objective Bayesian
optimization (LBN-MOBO).

Input

S // Batch size

Q // Number of iterations of the main algorithm

X // X € R™, n dimensional design space

0] // Native Forward Process, e.g., a simulation

Output Ps , P // Pareto set(designs) and Pareto front(performances) of NFP
begin

X% « Ug(X) // Draw S random samples from the design space.
Y? — ©(X%) // Query ® and form the data set.
dataset — (X°, Y°)
0 train R
fanN &= dataset // Train the BNN surrogate.
fori < 1to Q do
i i—1
PS» — AF(fBNN’ S)
P;, <—CI>(P§) // Calculate the performance on the NFP.
dataset «— (P;,, Pg) // Append new data to the old.

; train
fegnn & dataset // Train the BNN surrogate.

end
end

4.1 Bayesian neural network surrogate

Given that Deep Ensembles (DE) [Lakshminarayanan et al. 2016]
presents the most balanced trade-off between performance and scal-
ability (Section B.2), it will serve as the primary surrogate function
in our pipeline. Here, we delve into its implementation and make
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Fig. 2. LBN-MOBO starts with training a Bayesian neural network (fgarn) on random designs. We then run our acquisition function (Ar) and compute a 2MD
Pareto front to explore promising (green) and under-represented regions (red) of the NFP. We then append the acquired candidates to the data set and retrain
fBNN- By incorporating uncertainty information alongside the Pareto front of the best performances, we identify promising candidates in areas of high

uncertainty, where there is potential for additional information.

slight modifications to enhance its performance further. In this work,
we employ a modified version of DE as an approximation of a BNN
[Snoek et al. 2015]. DE consists of an ensemble of K neural networks,
fk, each capable of providing a prediction p (x) and its associated
aleatoric uncertainty oy (x) in the form of a Gaussian distribution
N (pg (x), 0% (x)). Lakshminarayanan et al. [2016] proposed to en-
semble these K sub-networks as following:

1 K
Fu(x) = 2 > i (). (2a)

k=1

2 _1 S 2
20 = 2 > (10 - Fh). (2b)
k=1

1 K
a0 = 2 D op(x) (20)

k=1
F2(x) = F2 . (x) + F2 , (%), (2d)

where F (x) is the ensemble prediction, and F, 4 (x) and F£(x) are
epistemic and aleatoric uncertainty, respectively. As evident from
Equation 2d, DE has the unique advantage of separation between
the epistemic and aleatoric uncertainty [Valdenegro-Toro and Mori
2022; Egele et al. 2022] allowing us to use these information selec-
tively [Kendall and Gal 2017] in LBN-MOBO. Epistemic uncertainty
measures the variation in predictions among the subnetworks of
the ensemble compared to the average prediction (Equation 2b).
Agreement among subnetworks indicates regions with abundant
data, whereas divergence highlights underexplored areas. Epistemic

uncertainty serves as a critical signal for guiding exploration. In
conventional BO with UCB acquisition (Equation 1) and in our novel
scalable 2MD acquisition (Equation 5), we leverage epistemic un-
certainty to ensure that no region is overlooked during the search
for the optimum.

On the other hand, aleatoric uncertainty quantifies irreducible
noise. In our application, where noise is minimal, we leverage the
separability property of Deep Ensembles to exclude aleatoric uncer-
tainty from our equations without impacting epistemic uncertainty
calculations. Consequently, we train K neural networks using the
traditional mean squared error (MSE) loss':

LBF = (v - (%)% 3)

Next, we extract the epistemic uncertainty F;g(x) from the net-
works in the ensemble:

Fu9 = 2 > (0, (4a)
k
Fop(d) = = (20 ~F2 (). (4b)
k

Apart from this modification, we find that providing a diverse set of
activation functions across K members of the ensemble significantly
helps with obtaining higher quality epistemic uncertainty. More
details are provided in Section C.1 of the supplementary materials.

Sometimes this is referred to as the frequentist approach [Tagasovska and Lopez-Paz
2018; Hillermeier and Waegeman 2021].
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4.2 2MD acquisition function

An acquisition function should predict the worthiest candidates for
the next iteration of the Bayesian optimization [Shahriari et al. 2015].
This translates to not only selecting designs with high performance
on the surrogate model but also considering the uncertainty of the
surrogate model. Candidates in uncertain regions of the surrogate
model may contain optima and a powerful acquisition function
should be able to explore these regions effectively. Several popular
acquisition functions such as Expected Improvement [Jones et al.
1998] and Upper Confidence Bound [Brochu et al. 2010] operate on
this principle.

Without the loss of generality, we assume a problem that seeks to
maximize performance objectives. Our acquisition function employs
the widely-used NSGA-II [Deb et al. 2002] for its multi-objective non-
dominated sorting property. Applying NSGA-II on the surrogate
rather than the NFP itself is the key for scalability of the acquisition.
The main insight of our acquisition method is that instead of finding
an M dimensional Pareto front corresponding to M objectives (each
given by FZ‘ (x), m € [1, M]), it finds a 2M dimensional Pareto front
where M dimensions correspond to performance objectives and
the other M dimensions correspond to the uncertainty of those
objectives (each given by F:(x), m € [1,M]). In other words,
our acquisition function Ar simultaneously maximizes the predicted
objectives (exploitation) and their associated epistemic uncertainties
(exploration):

F(x) = FZ’(X) ® FI'o(x), me [1,M], (5a)
Ar(F(x),S) := ParetoFront(F(x), S), (5b)

where @ represents the concatenation
of M prediction vectors and M epis-
temic uncertainty estimation vectors
and ParetoFront(F(x), S) returns the
set of S Pareto-optimal solutions that
maximize F(x) € R*M.

In practice, NSGA-II experiences a
sample size bottleneck and struggles
to scale effectively as the population expands. To overcome this
limitation, we propose to compute in parallel independent acquisi-
tions (using different NSGA-II seeds) with smaller batch sizes, and
combine the results. Ultimately, similar to our surrogate model, our
acquisition function (Ar) is fully parallelizable, and its performance
remains mostly unchanged when the batch size increases. Therefore,
the sole limiting factor for executing LBN-MOBO is our parallel
computation or experimentation capability when querying the NFP.

The inset figure provides an intuitive explanation of our 2MD
acquisition function by showing a schematic four-dimensional acqui-
sition function. Clearly, we are interested in evaluating the orange
samples (currently measured only using the surrogate) on the NFP
as they are suggested by Ar to be dominant in at least one perfor-
mance dimension (P1 or P2). On the other hand, the blue, red, and
green samples are chosen partially or entirely due to their high
uncertainty in at least one dimension (U1 or U2). These samples
correspond to unexplored regions in the design space. They are
beneficial in two ways: either they prove to be part of the Pareto
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front once being evaluated on the NFP, or they contribute to filling
the gap between the surrogate and the NFP [Ansari et al. 2022],
leading to a more informative surrogate model. This enhances the
quality of the surrogate model, making it as similar as possible to
the NFP, thereby improving its predictive power for subsequent
iterations. An ablation is provided in Section 5.4 to emphasize the
importance of epistemic uncertainty for exploration.

5 EVALUATION AND DISCUSSION

In this section, we demonstrate the advantage of LBN-MOBO in
making the most out of the already evaluated data and discovering
a significantly larger gamut than competing methods in a vari-
ety of real-world scenarios. Since the computational overhead of
LBN-MOBO (supplementary materials Section B.8 ) is negligible
compared to the simulation time of the batch of samples using the
NFP, we allocate an identical batch size for each iteration across
random sampling, LBN-MOBO, and NSGA-IL. The batch size in each
experiment is the largest possible batch allowed by the parallel eval-
uation limit of our infrastructure. We keep only competing methods
that can keep up with the huge batch sizes in each iteration (up
to 20,000), namely random sampling and NSGA-II. The output di-
mension in all these real-world problems is two. In Section B.5, we
extend the analysis to performance spaces with up to 10 dimensions,
showing LBN-MOBO’s effectiveness in handling larger dimensions.

5.1 Soft robot

Soft robotics focuses on designing flexible robots with applications
such as minimally invasive surgeries [Majidi 2014] and prosthet-
ics [Polygerinos et al. 2015]. In this section, we evaluate the out-
reach gamut of a snake-like soft robotic arm introduced by Sun et al.
[2021], using our LBN-MOBO approach. The robotic arm consists
of 103 vertices connected by flexible edges, with the robot’s base
fixed. Among the edges, 40 side edges are controllable (highlighted
in Figure 4a with color coded contraction/expansion), defining a
40-dimensional design space. Stretches and contractions of these
edges determine the final configuration of the robot.

This problem’s NFP is a PDE-constrained optimization, where
the design parameters serve as boundary conditions, and the solu-
tion provides the positions of all vertices [Xue et al. 2020]. Solving
these optimizations is computationally expensive. Neural surrogate
models offer a more efficient alternative. We train a Deep Ensembles
model comprising 10 subnetworks, each with three hidden layers
containing 128, 256, and 128 neurons and varying activations (see
Section C.1 of supplementary materials). The input to the model is
the expansions and contractions of the 40 controllable edges, while
the output predicts the (x, y) coordinates of the robot’s tip position.

Figure 3a compares the reachable gamut discovered using ran-
dom sampling, NSGA-II and LBN-MOBO. In many scenarios, where
domain knowledge is limited, random sampling is often used to
generate training data for surrogates. However, as shown in the fig-
ure, random sampling (yellow dots) and NSGA-II over 4 iterations
with a batch size of 2000 miss significant portions of the gamut.
In contrast, LBN-MOBO efficiently explores the design space, un-
covering a much larger gamut of reachability. Figure 4a illustrates
how reaching the bottom region requires challenging soft robot
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Fig. 3. This figure demonstrates LBN-MOBO’s performance on three challenging real-world problems, compared with random sampling and NSGA-II, the
only competing methods capable of handling large batch sizes (up to 20,000 samples per iteration). For the soft robot, Figure 3a shows the total reachable area
after 4 iterations, with the hypervolume progression depicted in Figure 3d. Figure 3b presents the final color gamut of a 44-ink printer after 10 iterations,
alongside the iterative gamut expansion in Figure 3e. Finally, Figure 3c highlights airfoil shapes with optimal lift-to-drag ratios discovered by LBN-MOBO

after 6 iterations, outperforming the competing methods.

conformations. These shapes demand significant asymmetry, with
most edges on one side contracting while the other side expands.
Such configurations are highly unlikely to be discovered through
sampling. While LBN-MBO find these configurations in less than 4
generation, NSGA-II would require significantly more generations
to achieve them.

This has critical implications. A surrogate model trained on in-
complete random data would struggle to accurately predict stretches
and contractions for desired tip positions in underexplored regions
[Xue et al. 2020]. By using LBN-MOBO, not only is the gamut ex-
panded, but the dataset becomes more comprehensive, leading to
a more reliable surrogate model. Figure 3d illustrates the area pro-
gression of the gamut discovered through all competing methods,
highlighting LBN-MOBO’s superiority in exploring the reachability
space effectively.

5.2 Printer’s color gamut

LBN-MOBO significantly speeds up experimental workflows by en-
abling the evaluation of large batches of samples in parallel, greatly
reducing the burden of iterative laboratory work. A prime example
is the exploration of a printer’s color gamut, where the goal is to
maximize the hue diversity and saturation of achievable colors.
Here, we quantify the color gamut in the CIE a*b* color space [CIE
2004], where the range of colors is represented as the area within
the contour of the CIE a*b* plot. In this space, CIE a* corresponds
to the red-green axis (negative values represent green and positive
values represent red), while CIE b* corresponds to the blue-yellow
axis (negative values represent blue and positive values represent
yellow). Expanding the gamut requires discovering more saturated
colors, which directly increases the area enclosed by the contour 2.

2For this problem, we solve four LBN-MOBO for four quadrants in order to advance
the Pareto front in four different segments.
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For this experiment, the printer’s Native Forward Process (NFP)
simulates how varying ink amounts produce specific colors. Follow-
ing [Ansari et al. 2022], we modeled the NFP using an ensemble of
10 neural networks trained on 344,000 simulated color patches with
varying combinations of 44 inks [Ansari et al. 2021]. This results in
a 44-dimensional design space, with the a*b”* color space serving as
the 2-dimensional performance space.

LBN-MOBO was initialized with 10,000 random samples, and
subsequent iterations processed batch sizes of 20,000 samples. The
ability to handle such large batches makes LBN-MOBO particularly
effective for this high-dimensional optimization task. In contrast,
traditional optimization algorithms often struggle with the scale and
dimensionality of this problem. As shown in Figure 3e, LBN-MOBO
achieved a rapid and substantial increase in the hypervolume of the
color gamut, outperforming random sampling with the same budget
and NSGA-II. Furthermore, Figure 3b highlights the significantly
larger estimated gamut achieved by LBN-MOBO compared to NSGA-
IT after 10 iterations.

5.3 Airfoil

The optimization of an airfoil’s lift
coefficient (Cr) and lift-to-drag ra-

5D Latent space

tio (Cr/Cp) exemplifies a challeng- [

ing multi-objective problem with high- m
dimensional design constraints and a i
computationally expensive NFP. The ON —
goal is to identify the Pareto front of =
Cr, and Cr/Cp by exploring various %

CFD simulator

airfoil shapes. These performance met- Qﬁ 0
rics are critical for designing efficient
and effective aerodynamic structures
such as airplane wings, with Cr, rep- \
resenting the upward force counter- Lift
acting weight and Cp quantifying the T_}
resistive drag force. o

In this experiment, we leverage b
OpenFOAM, a high-fidelity computa-
tional fluid dynamics (CFD) solver [OpenFOAM Foundation 2021],
to evaluate airfoil designs. The CFD simulations solve the Navier-
Stokes equations to compute Cr, and Cr./Cp [Thuerey et al. 2020].
To reduce the complexity of the 192-dimensional airfoil design space,
we use a generative adversarial network (GAN) to encode the com-
plex shapes into a five-dimensional latent space, enabling efficient
optimization [Chen and Ahmed 2021]. As depicted by the inset
figure GAN and OpenFOAM together form the NFP in this problem.

Random sampling, LBN-MOBO, and NSGA-II begin with 15,000
samples, and each iteration processes a batch size of 15,000 designs,
all simulated using OpenFOAM. This large-batch setup allows LBN-
MOBO to efficiently explore the design space while finding the
largest possible gamut with the least number of iterations. Figure 3f
highlights the hypervolume progression of the gamut over itera-
tions. LBN-MOBO outperforms NSGA-II and random by discovering
a larger gamut with similar number of iterations. The enhanced
exploration and exploitation capabilities of LBN-MOBO, driven by
its large-batch processing and high-quality epistemic uncertainty
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Fig. 4. Part (a) showcases some of the challenging conformations of soft
robots discovered by LBN-MOBO. Achieving these shapes requires signifi-
cant asymmetry, with most edges on one side contracting while the other
side expands. Such configurations are highly improbable with random sam-
pling, explaining why random sampling and NSGA-II fail to capture the
bottom region in Figures 3a, 1a, and 1b. Similarly, part (b) highlights airfoil
shapes whose performances lie on the gamut boundary, as calculated by
LBN-MOBO.

estimation, enable rapid convergence to high-performing designs.
Figure 4b showcases examples of airfoil shapes whose performances
lie on the gamut boundary discovered by LBN-MOBO.

5.4 The impact of epistemic uncertainty on the
performance of LBN-MOBO

One of the key factors enhancing the performance of LBN-MOBO
is its use of uncertainty to effectively explore under-represented
parts of the design space. We investigate the impact of uncertainty
on the computation of the Pareto front for both airfoil design and
color gamut exploration. Both experimental setups mirror the con-
ditions described in Sections 5.2 and 5.3, except that they exclude
uncertainty information. The candidate distribution from iteration
4 to 8 is illustrated in Figures 5a and 5b. For a clearer depiction of
the samples’ spatial distribution, we have illustrated their convex
hull. Note that in the absence of uncertainty, the candidates have
a tendency to cluster within particular areas. This clustering leads
to diminished diversity and, as a consequence, a reduction in the
capacity for exploration (as represented by the yellow samples).
Conversely, when uncertainty is incorporated into the process, we
observe an increase in the diversity of the candidates and conse-
quently, a broader Pareto front is discovered (represented by blue
samples). Furthermore, uncertainty guides the candidates to progres-
sively bridge the information gap in the surrogate models, making
them increasingly similar to the NFP. This factor further enhances
the quality of the Pareto front retrieved through the LBN-MOBO
process.

We also observe that when uncertainty is excluded from the
process, the budget for surrogate Pareto front optimization is con-
centrated solely on performance dimensions. This concentration
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Fig. 5. Ablation studies on the effect of epistemic uncertainty in our 2MD
acquisition function, using our real-world problems.

may occasionally lead to a slight local enhancement in optimization,
as illustrated in the bottom-left part of the gamut in Figure 5b.

6 CONCLUSION

We presented a highly scalable framework for the rapid discov-
ery of the performance gamut. LBN-MOBO proves to be a potent
black-box optimizer for problems where an increase in the batch
size does not significantly inflate simulation or experimentation
costs, but iterations are expensive. Notably, LBN-MOBO not only
retrieves a superior Pareto front but also enhances the surrogate
model throughout the optimization process, making it closely re-
semble the NFP. This has important implication for active learning
where once could start with a random dataset and incrementally
train the network with missing data until it converges to the NFP.
Looking forward, there are a few key aspects of this method that
warrant further exploration. First, the potential of LBN-MOBO in
managing design constraints needs to be assessed. Second, we can
undertake an analysis of the method’s performance in the presence
of highly noisy data, and possibly, enhance its robustness against
noise. Finally, while our current acquisition function is tuning-free,
it is intriguing to explore explicit methods that manipulate the bal-
ance between exploration and exploitation (by differently weighing
the uncertainty) and observe how this balance affects the overall
performance.
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