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Fig. 1. We propose a numerical environment suitable for learning close-loop control strategies for additive manufacturing via direct ink writing. Our method
observes an in-situ view of the printing process and adjusts the velocity and printing path to achieve the desired deposition. The control policies learned
exclusively in simulation can be deployed on real hardware.

Enabling additive manufacturing to employ a wide range of novel, functional
materials can be a major boost to this technology. However, making such ma-
terials printable requires painstaking trial-and-error by an expert operator,
as they typically tend to exhibit peculiar rheological or hysteresis properties.
Even in the case of successfully finding the process parameters, there is no
guarantee of print-to-print consistency due to material differences between
batches. These challenges make closed-loop feedback an attractive option
where the process parameters are adjusted on-the-fly. There are several
challenges for designing an efficient controller: the deposition parameters
are complex and highly coupled, artifacts occur after long time horizons,
simulating the deposition is computationally costly, and learning on hard-
ware is intractable. In this work, we demonstrate the feasibility of learning
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a closed-loop control policy for additive manufacturing using reinforcement
learning. We show that approximate, but efficient, numerical simulation is
sufficient as long as it allows learning the behavioral patterns of deposition
that translate to real-world experiences. In combination with reinforcement
learning, our model can be used to discover control policies that outperform
baseline controllers. Furthermore, the recovered policies have a minimal
sim-to-real gap. We showcase this by applying our control policy in-vivo on
a single-layer printer using low and high viscosity materials.
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1 INTRODUCTION
A critical component of manufacturing is identifying process param-
eters that consistently produce high-quality structures. In commer-
cial devices, this is typically achieved by expensive trial-and-error
experimentation [Gao et al. 2015]. To make such an optimization
feasible, a critical assumption is made: the relationship between
process parameters and printing outcome is predictable. However,
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such an assumption does not hold in practice because all manufac-
turing processes are stochastic in nature. Specifically, in additive
manufacturing, variability in both materials and intrinsic process
parameters can cause geometric errors leading to imprecision that
can compromise the functional properties of the final prints. There-
fore, the transition to closed-loop control is indispensable for the
industrial adoption of additive manufacturing [Wang et al. 2020].
Recently, we have seen promising progress in learning policies

for interaction with amorphous materials [Li et al. 2019b; Zhang
et al. 2020]. Unfortunately, in the context of additive manufactur-
ing, discovering effective control strategies is significantly more
challenging. The deposition parameters have a non-linear coupling
to the dynamic material properties. To assess the severity of de-
position errors, we need to observe the material over long time
horizons. Available simulators either lack predictive power [Mozaf-
far et al. 2018] or have prohibitive computational complexity for
learning [Tang et al. 2018; Yan et al. 2018]. Moreover, learning on
hardware is intractable as we require tens of thousands of printed
samples. These challenges are further exaggerated by the limited
perception of printing hardware, where typically, only a small in-situ
view is available to assess the deposition quality.

In this work, we propose the first closed-loop controller for addi-
tive manufacturing trained purely in simulation that can be later
deployed in real hardware. To achieve this, we formulate a custom
numerical model of the deposition process. Motivated by the limited
hardware perception, we make a key assumption: a numerical model
is sufficiently accurate as long as we can learn behavioral patterns
that hold across both simulated and real environments. This allows
us to replace physically accurate but prohibitively slow simulations
with efficient approximations. To ameliorate the sim-to-real gap,
we enhance the simulation with a data-driven noise distribution on
the spread of the deposited material. We further show that careful
input and action space selection is necessary for hardware transfer.
Lastly, we leverage the privileged information about the deposition
process to formulate a reward function that encourages policies
that account for material changes over long horizons. Thanks to the
above advancements, our control policy can be trained exclusively in
simulation with a minimal sim-to-real gap. We showcase this by de-
ploying our policy on a custom single-layer direct inkwriting printer.
Direct ink writing is a pressure-based deposition system capable of
processing a wide range of materials ranging from pastes, through
hydrogels, to functional inks. Finally, we demonstrate that our policy
outperforms baseline deposition methods in simulation and physical
hardware with low or high viscosity materials. Code and data for
this paper are at: https://github.com/misop/Closed-Loop-Control-
of-Direct-Ink-Writing-via-Reinforcement-Learning.

2 RELATED WORK
Many path planning strategies were devised to control the deposi-
tion process. Ranging from sparsely filling of the part interior [Wu
et al. 2018] to the generation of space-filling curves [Zhao et al.
2016]. The key assumption of static path planners is that the print-
ing process is reliable. Unfortunately, due to mechanical errors and
material imperfections, real fabrication processes are stochastic in
nature. In our work, we seek to enhance path planning with online

parameter control to dynamically react to the inherent variations
in the deposition.

Identifying Process Parameters. Ensuring a reliable material depo-
sition hinges on identifying stable printing parameters. To identify
process parameters for additive manufacturing, it is important to
understand the complex interaction between a material and a depo-
sition process. This is typically done through trial-and-error experi-
mentation either on hardware [Baturynska et al. 2018; Kappes et al.
2018; Wang et al. 2018] or in simulation [Ogoke and Farimani 2021].
Recently, optimal experiment design and, more specifically, Gauss-
ian processes have become a tool for efficient use of the samples to
understand the deposition process [Erps et al. 2021]. However, even
though Gaussian Processes model the deposition variance, they do
not offer tools to adjust the deposition on-the-fly.

Closed-Loop Control. Another approach to improve the printing
process is to design closed-loop controllers. One of the first designs
was proposed by Sitthi-Amorn et al. [2015] that monitors each layer
deposited by a printing process to compute an adjustment layer. Liu
et al. [2017] built upon the idea and trained a discriminator that
can identify the type and magnitude of observed defects. A similar
approach was proposed by Yao et al. [2018] that uses handcrafted
features to identify when a print significantly drops in quality. The
main disadvantage of these methods is that they rely on collecting
the in-situ observations to propose one corrective step by adjusting
the process parameters. However, this means that the prints con-
tinue with sub-optimal parameters, and it can take several layers
to adjust the deposition. In contrast, our system runs in-process
and immediately reacts to the in-situ observations. This ensures
high-quality deposition and adaptability to material changes.

Learning Closed-Loop Policies. Recently machine learning tech-
niques sparked a new interest in the design of adaptive control
policies [Mnih et al. 2015]. A particularly successful approach for
high-quality in-process control is to adopt the Model Predictive Con-
trol paradigm (MPC) [Nagabandi et al. 2018; Oh et al. 2017; Silver
et al. 2017; Srinivas et al. 2018]. The control scheme of MPC relies on
an observation of the current state and a short-horizon prediction
of the future states. By manipulating the process parameters, we
observe the changes in future predictions and can pick a future with
desirable characteristics. Particularly useful is to utilize deep models
to generate differentiable predictors that provide derivatives with
respect to control changes [de Avila Belbute-Peres et al. 2018; Li et al.
2019a; Schenck and Fox 2018; Toussaint et al. 2018]. Unfortunately,
deploying MPC on real hardware is challenging. The hardware must
receive the instructions at 8 Hz for smooth control, leaving only
125 milliseconds for computation. Such a strict time budget is not
sufficient for simulating the complex interactions of a deposition
process. In contrast, our vision-based policies can be evaluated in
under four milliseconds.

Policy Discovery via Reinforcement Learning. Another option to de-
rive control policies is to leverage deep reinforced learning [Akkaya
et al. 2019; Lee et al. 2019; Liu and Hodgins 2018; Peng et al. 2018;
Yu et al. 2019]. The key challenge in the design of such controllers is
formulating an efficient numerical model that captures the govern-
ing physical phenomena. As a consequence, it is most commonly
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applied to rigid body dynamics and rigid robots where such models
are readily available [Bender et al. 2014; Coumans and Bai 2016; Lee
et al. 2018; Todorov et al. 2012; Xu et al. 2019]. In contrast, learning
with non-rigid objects is significantly more challenging as the com-
putation time for deformable materials is higher and relies on some
prior knowledge of the task [Clegg et al. 2018; Elliott and Cakmak
2018; Ma et al. 2018; Wu et al. 2019].

Closest to our work is a learning framework proposed by Zhang
et al. [2020]. They demonstrate how to discover policies for hu-
man actors to manipulate visco-plastic fluids with rigid tools. While
the nature of both problems is similar (interaction with materials
governed by fluid dynamics), there are key differences between our
methods. Zhang et al. do not consider sim-to-real transfer since their
policies are not deployed in the real world. In contrast, our policies
are designed to be deployed on fabrication hardware. Zhang et al. re-
lies on full simulation state as feedback. For us, due to occlusions
created by the printhead, it is infeasible to observe the full state of
the deposited material. We introduce a vision system and a training
method that relies on the local state to control the deposition. Their
method does not learn to match a target shape. In contrast, our
reward function is devised to achieve an as-close-as-possible match
to the desired output while generating a uniformly flat layer. Finally,
the action space proposed by Zhang et al. allows several interactions
with the material. In contrast, during fabrication, materials cannot
be re-adjusted after deposition. Therefore, the nature of our problem
is fundamentally different as the controller needs to consider short-
and long-horizon changes at deposition time.

3 HARDWARE APPARATUS
The choice of additive manufacturing technology constraints the
subsequent numerical modeling. To keep the applicability of our
control policies as wide as possible, we developed a direct write
3D printing platform, (Figure 2 left). The platform consists of a
Cartesian robot with mechanical accuracy of ±10 microns. We limit
the acceleration to 1 mm/s2 and the velocity to 2 mm/s. To smoothly
control the platform, the instructions are set at 8 Hz. To deposit the
material, we rely on a pressure-driven syringe pump. The syringe
has a diameter of 10 microns, and the maximal pressure is 140 kPa.
Such a system allows us to deposit materials from oil-like to thick
pastes. To estimate the height of the deposited material, we leverage
its translucency. More precisely, we correlate the deposition height
with the optical intensity of our materials illuminated by a 600 lux
building plate. To capture the materials, we utilize two cameras with
an effective resolution of 150 × 150 pixels. For more details about
the setup, please see the supplemental material.

3.1 Baseline Path Planning
To guide the printing apparatus, we opted for an off-the-shelf slicer.
The input to the slicer is a three-dimensional object. The output is a
series of locations the printing head visits to reproduce the model as
closely as possible. To generate a single slice of the object, we start
by intersecting the 3D model with a Z-axis aligned plane (please
note that this does not affect the generalizability since the input can
be arbitrarily rotated). The slice is represented by a polygon that
marks the outline of the printout (Figure 2 gray). To generate the

printing path, we assume a constant width of deposition (Figure 2
red) that acts as a convolution on the printing path. The printing
path (Figure 2 blue) is created by offsetting the print boundary by
half the width of the material using the Clipper algorithm [Johnson
2015]. The infill pattern is generated by tracing a zig-zag line through
the area of the print (Figure 2 green).

Camera Modules

Material
Nozzle

Material Width
Outline Path

Target
Infill Path

Fig. 2. The printing apparatus (left) and the baseline printing policy (right).

4 REINFORCEMENT LEARNING FOR ADDITIVE
MANUFACTURING

The baseline path generation strictly relies on a constant width of
the material. To discover policies that can adapt the printing path to
the in-situ observations, we formulate the search in a reinforcement
learning framework. The control problem is described by a Markov
decision process (S,A,P,R), where S is the observation space, A
is a continuous action space, P = 𝑃 (𝑠 ′ |𝑠, 𝑎) is the transition function
that maps state 𝑠 and action 𝑎 to a new state 𝑠 ′, and R(𝑠, 𝑎) → R is
the reward function. In the following section, we will describe how
to apply this framework in the context of additive manufacturing.

4.1 Observation Space
The choice of observation space is critical for transferring the learned
knowledge from simulation to physical hardware. A natural choice
would be to utilize a direct image feed from a camera module. How-
ever, the large variety of available materials would introduce signif-
icant difficulty in the learning process where materials with similar
physical behavior could be treated differently based on their ap-
pearance. Moreover, the rendering would need sufficient graphical
fidelity to minimize the sim-to-real gap, further limiting learning
efficiency. We propose to tackle these challenges by employing
an engineered observation space. Rather than using the direct ap-
pearance feed from a camera module, we process the signal into
a heightmap. A heightmap is a 2D image where each pixel stores
the height of the deposited material. For each height map location,
the height is measured as a distance from the building plate to the
deposited material. This allows our system to generalize to a wide
range of sensors and materials.

We model our observation space as a small in-situ view centered
at the printing nozzle. The view has a size of 3.5× 3.5mm. Since the
location directly under the nozzle is obscured by physical hardware,
we mask a small central position equivalent to 1

7 th of the view.
Together with the local view, we also supply the printer with the
target and the baseline printing path in the local view. Increasing the
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data efficiency, we make the observation that the images are rotation
invariant along the direction of the printer’s scheduled moving path.
Therefore, we align the print direction with the image X-axis. These
inputs are stacked together into a 3-channel image, (Figure 3). For
outline printing, we threshold the heightfield to encourage a tighter
fit to the target printout.

In-Situ Printing Bed Desired Target Baseline Nozzle Path

Occluded by Nozzle

Deposited Material Empty Space

Fig. 3. Input to our policy are in-situ images of the printing bed, target
printout, and scheduled baseline printing path.

4.2 Action Space

In-Situ Printing Bed

Velocity

Displacement

The selection of action space plays a criti-
cal role in applying the learned strategies
to physical hardware. Tying the control
scheme too closely to a physical setupwould
exaggerate the discrepancies between the
physical world and our numerical model.
Moreover, the learned control strategies
would be valid only for particular hard-
ware implementation and would not trans-
fer across manufacturers of similar deposition systems. To address
these issues, we propose to learn high-level control strategies. More
specifically, our policy tunes the velocity of the printing head and
an offset from the baseline printing path (see inset). Such a control
strategy allows us to decouple high-level goals from low-level in-
puts. Moreover, we can lift the hardware constraints to only require
an apparatus with similar capabilities. In our simulation and physi-
cal samples, we consider a velocity range of [0.2, 2] mm/s and the
displacement of ±0.315 mm.

4.3 Transition Function
In our setting, the transition function should approximate the depo-
sition process. Unfortunately, this is a notoriously difficult problem
that leads to prohibitive simulation complexities. To address this
challenge, we make a key assumption: a qualitative approximation
of the deposition is sufficient as long as we can learn behavior pat-
terns that translate to real-world experiences. To achieve this goal,
we propose to use an efficient numerical model. We enhance the
model with a data-driven term that approximates the stochastic
nature of the physical deposition. Such a combination allows us to
efficiently discover control strategies that can adapt to deposition
noise similar to the one observed in physical hardware.

To model the interaction of the deposited material with the print-
ing apparatus, we rely on Position-Based Dynamics (PBD) [Müller
et al. 2007]. We model the printing materials as a set of particles

where each particle is defined by its position p, velocity v, mass
𝑚, and a set of constraints 𝐶 . In our setting, we consider two con-
straints: (1) collision with the nozzle and (2) incompressibility of
the fluid material. We model the collision with the nozzle as a hard
inequality constraint:

𝐶𝑖 (pi) B (pi − q𝑐 ) · n𝑐 ≥ 0, (1)

where q𝑐 is the expected contact point of a particle with the nozzle
geometry along the direction of particles motion v and n𝑐 is the
normal at the contact location. To ensure that our fluids remain
incompressible, we follow [Macklin and Müller 2013] and formulate
a density constraint for each particle:

𝐶𝑖 (p1, ..., p𝑛) B
𝜌𝑖

𝜌0
− 1 = 0, (2)

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗𝑊 (p𝑖 − p𝑗 , ℎ), (3)

where 𝜌0 is the rest density, and 𝜌𝑖 is given by a Smoothed Particle
Hydrodynamics estimator [Müller et al. 2003] in which𝑊 is the
smoothing kernel defined by the smoothing scale ℎ.

Material
Emitter

Nozzle

Printing Bed

Deposited
Material

The physical setup contains particles
in a pressurized reservoir. Unfortunately,
modeling a pressurized container is com-
putationally costly as it requires having
the particles in constant contact. Instead,
we approximate the deposition process
at the peak of the nozzle, (inset). More
specifically, we model the deposition as
a particle emitter defined as a rectangle in space. The emitter gener-
ates new particles as a function of pressure:

x𝑖 = distribute(𝑖), 0 ≤ 𝑖 ≤ ⌊𝑃Δ𝑡⌋, (4)
v𝑖 = [0, 0,−2𝑃] (5)

where Δ𝑡 is the simulation timestep, x𝑖 are newly generated particles
uniformly distributed on the surface of the emitter. The number of
particles and their velocity are a function of pressure 𝑃 .
Our idealized simulation deposits material at a constant rate.

However, physical hardware is not capable of such consistency. The
dynamic material properties coupled with process errors introduce
noise in the deposition process. To discover control strategies appli-
cable to physical hardware, we propose reintroducing this noise into
our numerical model. Due to the complex nature of the interactions
between the material and the deposition process, we propose to
model the printing noise in a data-driven fashion. To formulate a
predictive generative model, we employ a tool from speech process-
ing called Linear Predictive Coding (LPC) [Marple 1980]. Assuming
a dynamic material flow rate Q modeled as a time-varying function,
we can predict the flow at time 𝑁 as a weighted sum of𝑀 past flow
samples and a noise term:

Q𝑁 = −
𝑀∑︁

𝑚=1
𝑎𝑀,𝑚Q𝑁−𝑚 + 𝜖𝑛, (6)

where Q𝑁 are the flow samples, 𝜖 is a white noise term, and 𝑎𝑀,𝑚

are the parameters of 𝑀-th order auto-correlation filter. To find
these coefficients Burg [1975] propose to minimize the following
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energies:

𝑒𝑀 =

𝑁−𝑚∑︁
𝑘=1

|𝑓𝑀,𝑘 |2 +
𝑁−𝑚∑︁
𝑘=1

|𝑏𝑀,𝑘 |2, (7)

𝑓𝑀,𝑘 =

𝑀∑︁
𝑖=0

𝑎𝑀,𝑖Q𝑘+𝑀−𝑖 , (8)

𝑏𝑀,𝑘 =

𝑀∑︁
𝑖=0

𝑎∗𝑀,𝑖Q𝑘+𝑖 , (9)

where ∗ denotes the complex conjugate. After finding the filter
coefficients with Equation 7 we can synthesize new width variations
with similar frequency composition to the physical hardware by
filtering a buzz modeled as white Gaussian noise.

To fit the model we repeatedly printed an exemplar slice (Figure 4
left) andmeasured its width at fixed intervals (Figure 4middle). Since
we sample at discrete intervals, we further smooth our data with
an interpolating curve (Figure 4 right). We estimated the standard
deviation of the deposited material to be 175 microns, out of which
10 microns are attributed to the positional accuracy of our cartesian
robot. Since the position noise is insignificant with respect to the
print variations, we did not further separate the two noise terms.
Finally, we experimentally estimate the magnitude of the generative
noise 𝜖 by matching the simulation with the physical hardware.

The final predictive model generates realistic pressure variations
driven by observations from the physical hardware. To incorporate
these variations into our simulator, we use them to directly drive
the pressure of the material emitter at time 𝑡 to 𝑃𝑡 = Q𝑁 .

Calibration Printouts Sample Locations
Start End

Printing Episode

Pr
es

su
re

 V
ar

ia
tio

n Measurement
LPC Model

Fig. 4. We performed nine printouts and measured the width variation at
specified locations. We fit the measured data with an LPC model. Please
note that since our model is generative, we do not exactly match the data.
Any observed resemblance is a testament to the quality of our predictor.

4.4 Reward Function
Viscous materials take significant time to settle after deposition.
Therefore, it is necessary to observe the material spread over long
horizons to assess deposition errors. However, the localized nature
of the in-situ view does not permit such observations. At print-time,
the observation window is limited by the velocity to the range of
0.875 to 8.75 seconds. In contrast, a low-viscosity material typically
settles within 15 seconds of deposition. As a result, evaluating the
deposition on the physical hardware is feasible only with a scan
at the end of the print. In Section 5.3 we will show that such a
constraint on performance calculation inhibits the discovery of
optimal control strategies. To learn effective control policies over
long horizons, we propose to leverage the privileged information
available only in the simulated environment. At each timestep, we

calculate the reward as a printing performance measured on the
entire printing bed. More specifically, we estimate the reward R𝑡 at
simulation step 𝑡 as:

R𝑡 =
∑︁
𝑖, 𝑗

C𝑖 𝑗T𝑖 𝑗 −
∑︁
𝑖 𝑗

C𝑖 𝑗 (1 − T)𝑖 𝑗 , (10)

where C is the image of the printing bed and T is the desired
target printout. The first term rewards depositing material within
the target area, and the second punishes over-deposition. For infill
printing, we add an additional reward term to encourage deposition
with minimal height variation:

R𝑡 =
∑︁
𝑖, 𝑗

C𝑖 𝑗T𝑖 𝑗 −
∑︁
𝑖, 𝑗

C𝑖 𝑗 (1 − T)𝑖 𝑗 − 𝑠𝑡𝑑 (C𝑖 𝑗T𝑖 𝑗 ). (11)

To further accelerate the learning we generate dense rewards as a
delta between two steps R = R𝑡+1 − R𝑡 .

4.5 Learning Framework
Since the proposed transition is only a rough approximation of
the deposition, learning the exact model dynamics is unlikely to
result in adequate control of actual hardware. Therefore, instead of
learning the exact material behavior, we seek to discover behavioral
patterns that enable control of material deposition. To achieve this
goal, we formulate our search for control policies in a model-free
framework that relies solely on in-situ observations.
Our control policy is represented as a CNN modeled after Mnih

et al. [2015]. To find the policy, we follow the formulation of [Schul-
man et al. 2017] and estimate the expected policy reward as an
average over a finite batch of trials. For the training, we use a subset
of the Thingy10k dataset. Each trajectory consists of fully printing
a random slice. One epoch terminates by collecting 10000 observa-
tions. We run the algorithm for 4 million observations. Over time,
we anneal entropy coefficient from 0.01 to 0 and the learning rate
from 3 × 10−4 to 0. Lastly, we picked a discount factor of 0.99, cor-
responding to one action having a half time of 70 steps. This is
equivalent to roughly 22 mm of distance traveled. In our training
set, this corresponds to 29-80 percent of the total episode length.
We experimented with training controllers for materials with

varying viscosity, (Figure 5). In general, we have observed that the
change in viscosity did not significantly affect the learning conver-
gence. However, we have observed a drop in performance when
training control policies for deposition of low-viscosity materials.
Low-viscosity materials require longer time horizons to stabilize
and have a wider deposition area making precise tracing of fine
features challenging. For more details about the learning process,
please see the supplemental material.
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Fig. 5. Training curves for controllers with increasing viscosity.
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5 RESULTS
In this section, we provide results obtained in both virtual and
physical environments. We first show that an adaptive policy can
outperform baseline approaches in environments with constant
deposition. Next, we showcase the in-process monitoring and the
ability of our policy to adapt to dynamic environments. Finally, we
demonstrate our learned controllers transferring to the physical
world with a minimal sim-to-real gap.

Baseline Control Policy. The baseline control uses the path plan-
ning strategy described in Section 3.1. To ensure consistent width
between simulation and real hardware, we experimentally estimate
the printing parameters by printing a series of lines with varying de-
position parameters. We pick the setting that most closely matches
the deposition width assumed by the path planner.

5.1 Comparison With Baseline Controller
We evaluate the optimized control scheme on a selection of freeform
and CAD models sampled from Thingy10k [Zhou and Jacobson
2016] and ABC [Koch et al. 2019] datasets. In total, we have 113
unseen slices corresponding to 96 unseen geometries. We report our
findings in Figure 6. For each input slice, we report improvement
on the printed boundary as the average offset. The average offset
is defined as a sum of areas of under and over deposited material
normalized by the outline length. More specifically, given an image
of the target slice T , printed canvas C, and the length of the outline
𝑙 , the average offset O is computed as:

O =

∑
𝑖 𝑗 (1 − C)𝑖 𝑗T𝑖 𝑗

𝑙
+
∑
𝑖 𝑗 C𝑖 𝑗 (1 − T)𝑖 𝑗

𝑙
. (12)

The improvement is calculated as a difference between the baseline
and our policy. Therefore, a value higher than zero indicates that
our control policy outperformed the baseline. As we can see, our
policy achieved better performance in all considered models.
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Fig. 6. The relative improvement of our policy over baseline in printing task
with constant deposition.

5.2 Performance in Dynamic Environments
We evaluate our controller in environments with stochastic material
flow. To perform a quantitative evaluation, we utilize a single flow
variation profile. We use the same evaluation dataset as for constant-
flow policy and report the overall improvement over the baseline
controller, (Figure 7). We can observe that our closed-loop controller
outperformed the baseline in each of the considered slices.

5.2.1 Outline Printing. To evaluate the quality of our printouts, we
analyze the overflow and underflow histograms on a subset of the
evaluation dataset, (Figure 8). We can observe that the deposition

histograms of our policy are narrower than the baseline. The average
improvement in the standard deviation was measured at 16 microns.
Moreover, the deposition histograms generated by our policy more
closely approximate a normal distribution with an average skewness
0.5 lower than the baseline. We can therefore conclude that our
control policy achieves a tighter control on the material deposition.
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Fig. 7. The relative improvement of our policy over baseline in printing task
with noisy deposition.
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Fig. 8. Deposition histograms for two exemplar slices from our dataset.
Even in challenging, noisy environments, our control policy achieves tighter
control over the deposition process.

5.2.2 Infill Printing. We have also evaluated the infill policy in a
noisy environment, (Figure 9). We estimated the standard deviation
of the deposited heightfield for the baseline at 163 microns, and
our control policy at 114 microns. We can observe that the deposi-
tion noise leads to an accumulation of material. The accumulation
eventually results in a bulge of material in the center of the print,
complicating the deposition of subsequent layers as the material
would tend to slide off. In contrast, our policy dynamically adjusts
the printing path to generate a print with better height uniformity.

Max

Min

H
ei

gh
t

Baseline Infill Our Control Policy Infill

Overdeposition

Fig. 9. In a noisy environment, the baseline printing policy (left) significantly
over-deposits and produces a bulging surface. In contrast, our policy (right)
has almost no over-deposition and creates a uniform surface.
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5.3 Ablation Studies
To demonstrate that our design decisions indeed lead to improve-
ments in learning the deposition, we conduct several ablation studies
that test the individual components: the observation space, the ac-
tion space, and the reward function. Finally, we investigate how our
controllers generalize across materials with different viscosities.

For each test case, we compute the average offset improvements
with respect to the baseline similarly to Section 5.2. The aggregated
values are shown in Table 1. We treat our full controller as pre-test
and ablated controllers as post-tests. We use pairwise t-tests with
Holm-Bonferroni correction to estimate the statistical significance.
All the evaluated components of our control policy were found to
significantly improve the printing process (p-values < 0.01).
Table 1. Average improvements of controllers from our ablation studies.

Observation Space
Full Observation No Print Bed No Target No Path
` = 9.7, 𝜎 = 4.9 ` = 5.7, 𝜎 = 7.2 ` = 7.2, 𝜎 = 5.5 ` = 8.4, 𝜎 = 4.8

Action Space
Full Action Velocity Only Displacement Only

` = 12.7, 𝜎 = 5.7 ` = 7.5, 𝜎 = 2.5 ` = 5.6, 𝜎 = 8.3
Reward Function

Privileged Reward Delayed Reward Immediate Reward
` = 12.7, 𝜎 = 5.7 ` = −22.3, 𝜎 = 8.6 ` = 9.2, 𝜎 = 8.0

5.3.1 Ablation Study on Observation Space. Our control policy re-
lies on a live view of the deposition system to select the control
parameters. However, the in-situ view is a technologically chal-
lenging addition to the printer hardware that requires a carefully
calibrated setup. This ablation study verifies how vital the individ-
ual observations are to the final print quality. We consider three
cases: (1) no printing bed view, (2) no target view, and (3) no future
path view. Our analysis indicates that our full observation space
significantly improves the quality of printouts.

5.3.2 Ablation Study on Action Space. To evaluate the need to tweak
both the printing velocity and the printing path, we trained two
control policies with a limited action set to either alter the velocity
or the path offset. The difference in performance depends on the
inherent limitations of the individual actions. On the one hand,
adjusting velocity is fast (under 6.6 milliseconds) but can cope only
with moderate changes in material width. This can be observed as
the more prominent bulges of over-deposited material, (Figure 10
dark green region). On the other hand, while offset can cope with
larger material differences, it needs between 0.13 and 1.3 seconds
to adjust. As a result, offset adjustment cannot cope with sudden
material changes, (Figure 10 light green region). In contrast, by
utilizing the full action space, our policy can combine the advantages
of the individual actions and minimize over-deposition.

5.3.3 Ablation Study on Reward Function. Our reward function uses
privileged information from the numerical simulation to evaluate
how the material settles over time. However, such information is
not readily available on physical hardware. One either evaluates
the reward once at the end of each episode to include material flow
or at each timestep by disregarding long-term material motion. We
evaluated how such changes to the reward function would affect

our control policies. The learning process for a delayed reward is
significantly slower, and it is unclear if performance similar to our
policy can be achieved. On the other hand, the immediate reward
policy learns faster but cannot handle material changes over longer
time horizons, (Figure 11).

Velocity Only Displacement OnlyFull Action Space
Underdeposition OverdepositionTarget

Fig. 10. Our full action space allows adaptation to both fast (light green)
and large material deviations (dark green).

Privileged Reward Delayed Reward Immediate Reward
Underdeposition OverdepositionTarget

Fig. 11. Our privileged reward function facilitates the learning process
resulting in improved deposition in challenging regions (green).

5.3.4 Ablation Study on Viscosity. To verify that our policy can
adapt to various materials, we trained three models of varying
viscosity, (Figure 12). We can observe that, without an adaptive
control scheme, changing the material causes local over- or under-
deposition. Our trained policy dynamically adjusts the offset and
velocity to counterbalance the changes in the deposition. Our policy
is particularly good at handling smooth width changes and quickly
recovers from a spike in printing width.
We further observe how our controllers handle deviations from

the training material. The policy learned for the low-viscosity ma-
terials consistently under-deposits when used to print at higher
viscosities. Conversely, the control policy learned on high-viscosity
material over-deposits when applied to materials with lower vis-
cosities. From this observation, we conclude that our policy learns
the spread of the material post-deposition and uses this information
to guide the printing process. Therefore, slight viscosity variations
are not likely to pose a significant challenge for our learned policies.
However, if the learned material behavior is significantly violated,
the in-situ observation space limits the ability of our policy to adapt
to a before unseen material.

5.4 Performance on Physical Hardware
Finally, we evaluate our control policies on physical hardware. The
policies were trained exclusively in simulation without any addi-
tional fine-tuning on the printing device. To conduct the evaluation,
we equipped our printer with a pressure controller. The pressure
control was set to a sinusoidal oscillatory signal to provide a control-
lable dynamic change in material properties. We used two materials
with high and low viscosity, and used two separate policies pre-
trained in simulation using those materials. We printed 22 slices, of
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which 11 corresponded to the simulation training set and 11 to the
evaluation set. We monitor the printing process and use the cap-
tured images to run our evaluation function to capture quantitative
results. We observe that our controllers improve the average offset
over the baseline print in every scenario, (Figure 13).

Baseline Our
Low Viscosity

Our
Medium Viscosity

Our
High Viscosity

Vi
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Underdeposition OverdepositionTarget

Fig. 12. Evaluation of policy performance under varying viscosity.
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Fig. 13. The relative improvement of our policy over baseline in physical
printing task.

Our control policy for high-viscosity materials achieves similar
performance in both simulated (Figure 7) and real environments
(Figure 13). We can also observe that our policy achieves a more
significant improvement when handling low-viscosity materials. We
attribute this improvement to the tighter control of material spread
post-deposition. Lastly, we can observe that our policy for low-
viscosity materials performs better on the evaluation dataset. After
further investigation, there are two things we believe could cause
this discrepancy. Samples with finer features are more challenging
to print with low-viscosity materials. Also, the baseline performs
worse on prints that require depositing a larger volume of material.

A sample of the fabricated slices can be seen in Figure 14. The
closeups show the desired deposition as green outlines. For quanti-
tative evaluation, we overlay the prints with the target (white) and
plot a histogram of under (blue) and over (red) deposited material.

We can see that our control policy transferred remarkably well to
the physical hardware without any additional training. Our policy
consistently achieves smaller over-deposition while not suffering
from significant under-deposition. Moreover, in many cases, our pol-
icy achieves histograms with smaller widths suggesting we achieved

a tighter control over the material deposition than the baseline. This
demonstrates that our numerical model enables learning control
policies for additive manufacturing in simulation.

6 LIMITATIONS AND FUTURE WORK
Our control policies were trained assuming a fixed path planning
strategy modeled after commercial software. However, there are
other path generation strategies such as varying the infill pattern
or the outline line count. In our experiments, our control policies
can adjust well to different path planers at training time. However,
once trained, the control policy is likely to leverage the implicitly
observed path structure during execution. Therefore, for optimal
results, each pathing strategy should be trained separately.
We train our controllers to deposit a single uniform layer of

material. An interesting direction for future work is to extend the
training to multi-layer deposition. On the one hand, multi-layer
deposition brings additional freedom in correcting steps along the
printing direction. On the other hand, a multi-layer printing policy
needs to carefully consider material flow on the edge of each layer
to minimize spilling artifacts.
Finally, we trained our controllers assuming a fixed material

viscosity. In our ablation studies, we observed that a limited viscosity
adaptation is possible. However, large viscosity changes require
the training of separate policies. A potential line of future work is
developing a system identification module to recognize the material
viscosity from the in-situ view and select an appropriate controller.

7 CONCLUSION
We present a methodology for learning closed-loop control strate-
gies for direct ink writing via reinforcement learning. To learn an
effective control policy, we propose a custom numerical model of
the deposition process. During the design of our model, we tackle
several challenges. To obtain an efficient numerical simulator, we
leverage the assumption that a numerical model is sufficiently accu-
rate when it allows the learning of behavioral patterns that translate
to the physical task. To include non-linear coupling between process
parameters and printed materials, we utilize a data-driven predic-
tive model for the deposition imperfections. Finally, to enable long
horizon learning with viscous materials, we use the privileged infor-
mation generated by our numerical model for reward computation.
In several ablation studies, we show that these components are
required to achieve high-quality printing, effectively react to instan-
taneous and long-horizon material changes, handle materials with
varying viscosity, and adapt the deposition parameters to achieve
printouts with minimal over-deposition and smooth top layers.

We demonstrate that our model can be used to train control poli-
cies that outperform baseline controllers, and transfer to physical
apparatus with a minimal sim-to-real gap. We showcase this by
applying control policies trained exclusively in simulation on a
physical printing apparatus. We use our policies to fabricate several
prototypes using low and high viscosity materials. The quantita-
tive and qualitative analysis clearly shows the improvement of our
controllers over baseline printing. This indicates that our numerical
model can guide the future development of closed-loop policies for
additive manufacturing. Thanks to its minimal sim-to-real gap, the
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model democratizes research on learning for additive manufacturing
by limiting the need to invest in specialized hardware.

We optimized our control policies assuming single-layer deposi-
tion. Although this is sufficient for many applications, e.g., printed
electronics, microfluidics, or bio-printing, the clear next step is multi-
layer, 3D printing. To achieve this, we are improving our acquisition
setup for capturing taller, more complex geometries. This will open
up many new research directions, such as slicing-aware path plan-
ning and applications, such as printing optical designs, food, or
functional mechanisms. We believe our introduced approach can
serve as a blueprint for future research in AI-driven control of
advanced manufacturing technologies, such as machining and laser-
material processing. An important lesson we learned is the value
of efficient numerical simulation of the involved physical phenom-
ena. The graphics community can be a major driving force behind
developing such simulations.
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