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In the main paper, we use a single-step particle simulation whose main
component is a velocity field that takes particles from their initial position to
their final position. In order to verify this simple setup, we also implement a
significantly more complex simulator based on a Lattice Boltzmann Method
(LBM), which is usually employed in fluid dynamics for solving advection-
diffusion problems. The result of both simulation methods are given in the
main paper. Here, we describe our LBM-based particle simulation used in
our framework that models the spreading of printing materials.
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1 LATTICE BOLTZMANN METHOD FOR MATERIAL
SPREADING

We assume that the spreading that we observe in our prints occurs
during the fluid phase of the material before being cured, that is,
made solid, by UV light. External forces are applied by themovement
of the print head and the jetting process. Internally, thermal energy,
cohesion, and adhesion all contribute to a never-ending jiggling.
Therefore we propose to approximate this behavior using a fluid
simulator, namely the Lattice Boltzmann Method.
The Lattice Boltzmann Methods are a class of computational

fluid dynamics methods. These methods originate from lattice gas
automata [Chen and Doolen 1998] and provide a numerical solution
to the Navier-Stokes equations. LBM characterizes a set of particles,
statistically, by a probability density function

𝑓 (x, v, 𝑡)

which defines the probability of a particle at position x to possess ve-
locity v at time 𝑡 . We additionally define the density and momentum
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Fig. 1. The steps of the lattice Boltzmann simulation

of the fluid as

𝜌 (x, 𝑡) =
∫

𝑓 (x, v, 𝑡)𝛿𝑣, (1)

𝜌 (x, 𝑡)v =

∫
v𝑓 (x, v, 𝑡)𝛿𝑣 . (2)

In a fluid at rest, with no external forces and where inter-molecular
forces can be ignored 𝑓 reduces to the Boltzmann distribution. We
model what happens when a force F is applied to a particle by
Newton’s law of motion:

𝑓 (x, v, 𝑡) = 𝑓 (x + v𝛿𝑡, v + F
𝑚
𝛿𝑡, 𝑡 + 𝛿𝑡), (3)

of which we can compute the derivative(
𝛿

𝛿𝑡
+ v · ∇𝑥 + F

𝑚
· ∇𝑣

)
𝑓 = 0. (4)

But we would also like to account for collision between particles.
We thus additionally introduce another term so that we have(

𝛿

𝛿𝑡
+ v · ∇𝑥 + F

𝑚
· ∇𝑣

)
𝑓 = Ω(𝑡), (5)

where Ω(𝑡) is aptly named the collision operator (Fig. 1). Evaluating
∇𝑣 𝑓 is unfortunately very difficult. In the absence of external forces,
however, Eq. 5 reduces to(

𝛿

𝛿𝑡
+ v · ∇𝑥

)
𝑓 = Ω(𝑡), (6)

which is the material derivative of 𝑓 . The new form is more treatable
but since x and v are continuous it’s still very hard.

This brings us to the core of LBM. This method discretizes space
into a regular grid, i.e., a lattice, and at each point it assumes there
is a certain number of particles. Furthermore, it also discretizes the
direction and magnitude of the speeds at which particles can move
such that at each time step they can only move into a neighbour-
ing lattice point. Formally, for each lattice point we redefine the
distribution function as

𝑓 (x, 𝑒𝑖 , 𝑡) = 𝑓𝑖 (x, 𝑡), 0 ≤ 𝑖 ≤ 𝑁 . (7)

Notice how the particles can only assume a finite set of velocities.
These velocities are given by the choice of discretization. A popular
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Fig. 2. Adjusting the density in 2D is a projection of a 3D effect. The material
is always jetted in droplets which then spread to cover the whole area.

choice is a D2Q9 configuration where the 2 is for the dimensionality
of the lattice and 9 for the possible velocities given by the 8 cardinal
directions and the rest position. Now Eq. 6 becomes(

𝛿

𝛿𝑡
+ e𝑖 · ∇𝑥

)
𝑓 = Ω(𝑡), (8)

and therefore

𝑓𝑖 (x + e𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖 (x, 𝑡) = Ω𝑖 (𝑡). (9)

There is an extensive literature on what Ω(𝑡) must be. We use the
Bhatnagar–Gross–Krook assumption [Bhatnagar et al. 1954] that
simply states that 𝑓 will eventually decay with a rate of 1

𝜏 toward
an equilibrium distribution 𝑓 eq, that is

Ω𝑖 =
1
𝜏

(
𝑓 eq − 𝑓𝑖

)
, (10)

where 𝑓 eq is

𝑓 eq = 𝜔𝑖𝜌

(
1 + 3

e𝑖 · u
𝑐

+ 9
2
(e𝑖 · u)2

𝑐2
− 3
2
u · u
𝑐2

)
. (11)

Here, 𝜔𝑖 is a term that depends on the choice of discretization, 𝑐 is
the speed of sound in the medium and u is the macroscopic velocity
(vectorial sum of the discrete velocities) at each lattice point.

𝑓𝑖 = 𝑓𝑖 −
1
𝜏

(
𝑓 eq − 𝑓𝑖

)
. (12)

The relaxation factor 𝜏 and the number of iterations 𝑁 are hyper-
parameters to our simulation. The relaxation factor describes how
viscous a fluid is while the number of iterations implicitly define
how long the material should be allowed to stay fluid before they’re
cured. We choose 1

𝜏 = 0.03 and 𝑁 = 100.
It’s worth noting that while there exists a mapping between the

values used in the simulation and real physical values that is not
of interest to us. A few key notes: fluids should be relatively slow
otherwise the assumption that they can only move to neighbouring
cells falls down and it’s very important to consider the boundary
conditions, that is, what happens at the edge of the simulations
or at the interface between the fluid and an obstacle. We respect
the first restriction but conveniently choose non-physical boundary
condition. We can do that because we restrict our region of interest
to a subset of the simulation domain.
Finally we’re ready to introduce how we customize the LBM to

model the material distribution. Our main assumption is that the
pigments are suspended within the material and that they move
with its flow. Furthermore we make the assumption that we only
need to simulate one 𝑋 × 𝑌 slice of material at a time, that is the

previous slice is fully cured and thus particles cannot interact. We
then define 3 fields

𝝂 : R𝑋×𝑌×2 (13)

𝝆 : R𝑋×𝑌×9 (14)

𝝁 : R𝑋×𝑌×𝑘 . (15)

The velocity field 𝝂 represents the initial continuous, macroscopic
velocities of the particles. Since we’re working in 2D the vectors
are also 2-dimensional. The density field 𝝆 represents the variable
density of pigments in the print. This captures variations from
the nominal amount of jetted material. As illustrated in Fig. 2, if a
volume that is less than that of the parallelepipedical voxel is jetted,
the material will always spread to fill the empty space but will be
overall slightly smaller in height. Therefore what we’re seeing is
really a 2D view of a 3D effect. The density field is 9-dimensional, the
same dimensionality as the discretized velocities for LBM. Finally,
the mixing field represents the amount of physical mixing between
the materials. In other words, 𝝁 defines the proportion at each
lattice points between the materials. If we only have 2, 𝑘 = 1 and
consequently if 𝜇 = 0 or 1 it means there are only particles of one
type of material. Formally we can now define our simulator function
as

S : (𝝂, 𝝆, 𝝁) → (𝝂 ′, 𝝆′, 𝝁′). (16)

We implement S using JAX [Bradbury et al. 2018], “an Autograd
and XLA, brought together”. We only write the code of the LBM
in forward mode, and JAX performs automatic differentiation w.r.t.
the inputs. Some glue code is used to manually backpropagate the
gradients coming from the renderer.
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