
Learning Deposition Policies for Fused Multi-Material 3D Printing

Kang Liao∗,1,2, Thibault Tricard∗,1, Michal Piovarči3, Hans-Peter Seidel1, and Vahid Babaei1
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Abstract— 3D printing based on continuous deposition of ma-
terials, such as filament-based 3D printing, has seen widespread
adoption thanks to its versatility in working with a wide
range of materials. An important shortcoming of this type of
technology is its limited multi-material capabilities. While there
are simple hardware designs that enable multi-material printing
in principle, the required software is heavily underdeveloped. A
typical hardware design fuses together individual materials fed
into a single chamber from multiple inlets before they are de-
posited. This design, however, introduces a time delay between
the intended material mixture and its actual deposition. In this
work, inspired by diverse path planning research in robotics,
we show that this mechanical challenge can be addressed via
improved printer control. We propose to formulate the search
for optimal multi-material printing policies in a reinforcement
learning setup. We put forward a simple numerical deposition
model that takes into account the non-linear material mixing
and delayed material deposition. To validate our system we
focus on color fabrication, a problem known for its strict
requirements for varying material mixtures at a high spatial
frequency. We demonstrate that our learned control policy
outperforms state-of-the-art hand-crafted algorithms.

I. INTRODUCTION

An increasingly large number of additive manufacturing
(AM), also known as 3D printing, technologies rely on
continuous deposition where the deposited material follows
a continuous path. Such systems are highly preferred over
the alternative raster deposition, such as inkjet printing,
thanks to their capability of printing with a wide range
of materials, from electronics to biomaterials [1], [2]. A
popular continuous-deposition printing hardware, considered
as a representative of this technology in our work, is Fused
Deposition Modeling (FDM). FDM works by extruding a
plastic filament heated to its melting temperature which
solidifies quickly after deposition. While simple in concept,
FDM fabrication has seen widespread adoption by a va-
riety of users, including hobbyists, artists, educators, and
researchers. Even though FDM printers can process a wide
range of filaments, most commercial devices offer at most
two separate nozzles: one for the model material and one
for the support material. The constraints of a two-nozzle
system, e.g., registration of the nozzles, separated paths
of the nozzles, and a limited number of materials hinder
achieving functionally graded materials that are critical in
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many applications, such as metamaterial design [3], color
fabrication [4], or self-assembling [5].

The quest for multi-material, continuous deposition has
motivated various hardware improvements [6], [7], [8]. The
most successful to date builds on a fusion strategy, much
related to the initial FDM concept (but not necessary limited
to FDM). In this design, multiple materials are fed into an
expanded heated chamber simultaneously as shown in Figure
1 (c). As they melt, they fuse into each other forming a
composite material. The proportion of different filaments
inside the composite is governed by the feed rate of the
primary filaments. Such a system can generalize to an array
of nozzles and even be adapted to varying viscosities [9].
A disadvantage of this design is that the expanded cham-
ber leads to a considerable delay when switching from a
composite with a desirable mixture ratio to a different one.
This manifests as a region where the materials smoothly
vary between the two target mixtures, limiting the achievable
spatial resolution.

To tackle this problem we take inspiration from the in-
terconnection between robotics and additive manufacturing.
Robotic systems are extensively used for material deposi-
tion [10], [11] where their large range of motion allows for
building support free structures [12] or even deposit material
in air [13]. The key in deploying deposition systems with
such a high degree of freedom in movement lies in careful
robotic control [14], [15], [16]. Similarly, in this work, we
seek to improve the multi-material continuous deposition by
finding optimal printing policies. To this end, we propose a
numerical approximation of the FDM printing process based
on empirical observations. We integrate our numerical model
into a reinforcement learning framework. To accommodate
high-frequency changes we adapt the learning process for
fused deposition. These improvements enable us to discover
optimal printing strategies by experimenting in a simulated
environment. To validate our approach, we present a case-
study in color fabrication, notorious for its requirements for
reproducing high-frequency changes present in the input con-
tent (i.e., images). We demonstrate that our control policies
are capable of reproducing such a level of detail. Moreover,
we show that our control strategies significantly outperform
the current state-of-the-art in color fused fabrication. We
believe that our framework is the first step toward practical,
high-quality multi-material deposition and can be expanded
to generate policies for physical hardware. Our code is avail-
able at https://github.com/ThibaultTricard/material-fusion.
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Fig. 1. Overview of our method. We propose to formulate the search for optimal multi-material printing policies in a reinforcement learning setup. First,
the agent observes the environment through a 1D sliding window, constructing the state space from the target image (a). Then, our fabrication policy
(b) takes the state as input and predicts the feed-rate in regards to different filament materials (in this work we consider the CMYKW setup with five
materials). Besides, a numerical deposition model (c) is designed to take into account the non-linear material mixing and delayed material change. Finally,
the agent gains the reward in CIELab color space by simulating the resulting pattern on the canvas (d).

II. RELATED WORK

Creating objects made of multiple materials at a high
spatial resolution, leading to functionally graded materials,
is one of the key competitive advantages of additive man-
ufacturing (AM) over traditional manufacturing methods.
Multi-material printing, especially at a high resolution, is
typically associated with a single AM technology: inkjet
printing. Given the inherent limitation of inkjet 3D printing,
we are witnessing hardware improvements that bring multi-
material printing to continuous-deposition systems, such as
FDM printers [8], [6], [7], [17], [18], [19]. The most common
approach is to utilize multiple-in-one-out mixing nozzle as
illustrated in Figure 1 (c). Such a nozzle fuses the base
materials at the output providing excellent mixture quality.
Such a high mechanical performance motivated researchers
to bring this kind of nozzle to other systems such as Direct-
Ink Writing and to generalize the system to multi-nozzle
output [9]. A natural drawback of mixing materials within the
nozzle is the increased delay required for material swaps. In
the case of FDM printers discharging the in-nozzle material
can take up to 500 milliseconds. Such a delay causes visible
artifacts that affect the functional behavior of printed objects.

In recent years we have seen significant improvements in
machine learning based control strategies [20], [21]. Most
notably Reinforcement Learning (RL) has been shown to be
a powerful tool for discovering control policies for robotic
arms [22], [23], hands [24], [25], [26], walker robots [27],
[28], [29], and their simulated counterparts [30], [31]. In-
spired by this success in robotics and in a transition from
hand-designed control algorithms, researchers have started to
explore RL for controlling additive manufacturing hardware.
The method has been successfully applied to stabilization of
filament feed rate [14], tool-path optimization [32], thermal
control [15], or control of arc welding [33]. Most notably,
Piovarci et al. [16] presented a first closed-loop control pol-
icy, discovered entirely in simulation, for printing uniformly
covered layers in the presence of considerable material
spreading. In this work we assume the material spreading is
negligible, plausible for FDM filaments. Having a completely
different goal in mind, we take inspiration from this work
to control multi-material fusion-based printing. We seek
an optimal control strategy that would enable reproducing

features beyond the originally assumed capabilities of the
physical hardware.

A notable application for multi-material 3D printing is
color reproduction [34], [35], [36], [4]. To create a wide
range of colors the printers rely on a set of material primaries.
The typical primaries are Cyan (C), Magenta (M), Yellow
(Y), Black (K), and White (W). Typically, it is assumed that
the printer can switch between material instantaneously [37]
(the case for the dominant inkjet 3D printing). The instan-
taneous materials swaps are specially important for images
with high spatial frequency material contents. Because of
these challenges, we opted for color fabrication as a stress
test of the capabilities of our control system for multi-
material fusion 3D printers.

III. NUMERICAL MODEL OF FUSION PRINTER

We propose an empirical model of the deposition process.
During the fabrication, a set of N materials is pushed towards
the nozzle. By varying the feed rates of individual materials
one can achieve various material mixtures. Typically, to
maintain a consistent deposition the sum of the feed rates is
constrained to a constant value. As the materials are pushed
towards the nozzle they melt and fuse together. We mimic
this behavior in our numerical model:

m =
N

∑
i

wiPi, (1)

where m is a new mixed material, wi are the mixing ratios
subject to ∑

N
i wi = 1, and Pi are material parameters. In

practice the mixing weights wi are scaled to a feed rate
appropriate for the physical machine.

The fused material mixture accumulates at the nozzle. The
accumulated material needs to be discharged before a change
in material mixture can be visible. We model this hysteresis
using an exponential decay of material present at the nozzle:

Mt = (1−ξ )tm−n

t−n

∑
i=−n+1

mi ·ξ (1−ξ )t−n−i, (2)

where Mt is the material mixture at location t, ξ denotes
the changing stride regarding to the current ratios, and n
represent the delay between nozzle input and output change,
with all mi where i < 0 set to a default value. Intuitively,



our model emulates the mixing of material inside the nozzle
by relying on an exponential averaging of the previous input
feeding rates to which we add a delay. We empirically set the
ξ (mixing ratio) and n (time delay) to 0.6 and 5, respectively
to match the observed color transition on a typical nozzle.

Having the material ratios at each location t, we now
seek to compute the color of the fused composite. The
color of a mixture is derived from its reflected spectrum
R(λ ) at each visible wavelength λ . Similar to many other
material properties, the color of a mixture has a non-linear
relationship with the color of the base components that make
up the mixture. The gold-standard color prediction model
for mixing paints or pigments is the Kubelka-Munk (K-
M) model [38]. Rooted in material properties, the model
represents each primary material as wavelength-dependent
absorption K(λ ) and scattering S(λ ) coefficients. To predict
a new material we first mix these coefficients linearly:

Kmix(λ ) =
N

∑
i

MtiKi(λ ), Smix(λ ) =
N

∑
i

MtiSi(λ ), (3)

where Mti are the mixing ratios of our materials. Next, to
compute the visible spectra, Kubelka and Munk derived the
following analytical relationship:

Rmix(λ ) = 1+α(λ )−
√
(α(λ ))2 +2α(λ ), (4)

where Rmix(λ ) is the visible spectra, and α(λ ) = Kmix(λ )
Smix(λ )

.
Note that we here don’t take into account all wavelengths
and use broadband RGB channels, and thus obtain 3D
RGB colors Rrgb

mix in Equation 4. In practice we rely on the
implementation in [39] which augments the K-M ‘latent’
space with additional imaginary bases to cover the whole
RGB color space.

IV. LEARNING FRAMEWORK

Our main goal is to learn a deposition policy that re-
produces a continuous (but not necessarily smooth) multi-
material density field. We focus on color reproduction of
a 2D image using a simulated multi-filament FDM printer
(Section III). The input to the policy is a target image. The
output is a set of feed rate instructions along a predefined
printing path to replicate the input as closely as possible.
The main challenge stems from the hardware limitations that
prevent the deposition of materials with precise mixing ratios
at a high spatial resolution.

To find a suitable printing policy we formulate the
search in a reinforcement learning setup. More precisely,
we cast the policy search into a Markov Decision Process
(S ,A ,P,R), where S is a set of valid inputs to the
policy, A is the set of actions available to the policy, P
is a transition function that models the printing process, and
R is the reward function that evaluates the quality of the
deposition. In this section, we describe how to apply this
framework for colored FDM deposition. The overview of
our method is shown in Figure 1.

A. State Space

The state space defines the input to the control policy. A
natural selection would be to use the complete input image.
However, the space of all possible input images is too large
to be explored efficiently. To facilitate the exploration we
can leverage the mixing properties of the physical nozzles.
Mixing different material ratios takes a predefined amount
of time. This naturally discounts the influence of the current
printer state on future states as the material in the chamber
will be gradually dispensed. Therefore, we suggest to model
the state space as a 1D sliding window centered at the current
nozzle location as shown in Figure 1 (a). We allow the
control policy to observe the RGB color of L pixels in the
future to adjust deposition. We empirically set L to 15 for
a sufficient receptive field while eliminating other irrelevant
context.

B. Action Space

A typical 3D printer operates by receiving time-based
instructions on nozzle position (printing path) and process
parameters (feed rate in our case). We fix the path and focus
on learning to output appropriate process parameters. While
any space filling curve could be used in our setting, we
choose to work with a rectilinear (zigzag) path common for
FDM printers. Thus, we tune the feed rate of each input
filament to control the resulting color mixture. In this work
we consider a full-color printer with CMYKW filaments.

C. Transition Function

The transition function in our problem represents the
printing process. We model it using our customized simulator
from Section III. The simulator takes the current state of the
system (i.e., the printing bed, and the leftover material in the
nozzle) and the action (i.e., material feed rates) as input and
outputs the system stateafter simulating the deposition.

D. Reward Function

Our reward function measures the difference between
the target color and the deposited color at each location.
Although an Euclidean distance in RGB could be used,
we opt for the CIELab color space [40] because of its
superior perceptual uniformity. The CIELab colors can be
derived directly from RGB colors using a set of analytical
transforms [41]. The reward function is therefore the most
well-known color difference formula (∆E):

R := ∆E =−∥RLab
mix −RLab

target∥2. (5)

V. MULTI-MATERIAL FUSION FABRICATION POLICIES

To discover a printing policy we adopt the actor-critic
framework [42]. We model both the actor and the critic using
convolutional neural networks (CNNs). Our networks have
3 layers with 1×3 convolutional filters, which progressively
extract the high-level features while keeping the spatial
alignment among different channels. The layers have 32, 64,
and 128 filter kernels respectively. The final CNN output is
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Fig. 2. We show the reproduced results by our method and the targets (in gamut-mapped format). The zoom-in views of different samples are exhibited
upon the results.

flatten and passed through a fully connected layer of 512
neurons.

A key feature of colored fabrication is the need for
high-frequency changes. Unfortunately, the state-of-the-art
in CNN relies on rectified linear units (ReLU) activation.
ReLUs are incapable of representing high-frequency infor-
mation due to their incapability to model the derivatives of
input signals [43]. To ameliorate this problem, we propose to
replace the activation function with a periodic function such
as the sinusoid. A sinusoid activation function can preserve
arbitrary order of signals derivatives, which allows it to
capture high-frequency details. A disadvantage of sinusoidal
activation functions is their notoriously hard initialization
that significantly affects the learned output [43]. To address
this issue, we first map the activation range into a monotone
interval by tuning the amplitude of the sinusoid. Then,
the LayerNorm [44] is exploited before each activation.
This normalization ensures stable regularization with low
dependencies on mini-batch data.

At each iteration, we optimize the printing policy by
interacting with the environment. We start by printing a batch
of exemplars. Next, we optimize the policy parameters by
maximizing the following function:

argmax
θ

Ee

[
πθe(ae|se)

πθe−1(ae|se)
Âe

]
, (6)

where e is the current iteration, θ are the learned parameters
of CNN, which encodes the policy π that generates an action
at in terms of the observed states st , Ât is the estimator of
the advantage function generated by our critic network, and
the expectation Et is an average over our printing batch.

To maximize Equation 6, we use the proximal policy
optimization (PPO) algorithm [45]. We set the learning rate
and entropy coefficient to 0.001 and 0.0001, both of which
are annealed to 0 during training. We use a discount factor
of 0.99 and a batch size of 1.

VI. EVALUATION

In this section, we conduct extensive experiments to
demonstrate the performance of our printing policy.

A. Dataset and Implementation Details

We use a random set of 20 images as our dataset. Each
image has approximately the resolution of 1000 × 1000
pixels. Given the color of the assumed primary materials
(CMYKW), one cannot usually cover the gamut (i.e., range)
of all (s)RGB colors. Thus, all images in this work are first
gamut mapped into the space of colors achievable by our
primaries (that is the colors our simulated printer can create).
We follow standard gamut mapping algorithms for this step
[41]. During the training, we randomly crop patches with
the size of 75 × 75 from the training dataset, which are
sequentially fed into the agent in the form of 1D sliding
window. For keeping the input size of networks, we pad
the 1D window with black value when it passes the image
boundaries. During the validation, our agent sequentially
takes the whole target image as input, and reproduces the
result with the full resolution.

B. Reproduction Performance

As illustrated in Figure 2, our results show high-fidelity
to the target images. The colors reproduced by our printing
policy are bright, vivid, and manifest high-contrast. Even
more importantly, our printing policy excels at reproducing
the image structure. By carefully controlling the fusion
ratio at each printing location, our policy is capable of
minimizing the inherent horizontal artifacts and reproduce
features with extremely high spatial details (Figure 2 insets).
In certain images there is an observable loss of details in
our reproduction. We attribute this to the challenging task.
Note that our policy has to learn two different tasks: 1) color
reproduction, i.e., for a given input RGB color what are
the mixing ratio of base materials 2) structure reproduction,



Fig. 3. Samples of our training dataset. We emphasize there is a significant
domain gap between the training dataset and test dataset. Our validation
results demonstrate the proposed method can bridge this gap by learning an
effective multi-material fusion policy.

by taking into account the inherent delay of the simulated
printer. It is worth noting that all the results derive from the
test dataset, which means our agent is capable of generalizing
to unseen data distribution. The training samples are shown
in Figure 3, where a considerable domain gap with the test
data can be noticed.

C. Comparison with Baseline Deposition

We design a baseline multi-material fusion to show the
benefit of our optimized policy. For the color reproduction
task (see above), we use our own policy to determine the
mixing ratios of primary materials. The baseline, however,
makes a naive assumption concerning the structure repro-
duction (task 2 above): it treats the material changes as if
they can occur instantaneously while in reality the computed
mixing ratios are fed directly into our simulator. We seek
to show that such naive strategy does not lead to optimal
deposition. We can see the result of such an approach in
Figure 4 (middle). The naive baseline is successful in repro-
ducing the colors of the image. However, the appearance is
significantly degraded due to the artifacts in image structure.
We can observe severe line artifacts that are caused by
the delay between material changes. In contrast, our fusion
control policy performs significantly better on the same
input (Figure 4 right). In our result, the line artifacts are
minimized and the detailed texture from the input image is
well preserved. Additionally, we compare our method and
the naive baseline on the whole test dataset. The quantitative
evaluation is listed in Table I, it shows our superiority
especially in structural measurement.

TABLE I
QUANTITATIVE EVALUATIONS ON COMPARISON METHODS.

Metrics PSNR↑ SSIM↑ PSNRstd ↓ SSIMstd ↓
Naive Baseline 18.38 0.4081 1.94 0.1117

Ours 22.21 0.7003 1.64 0.0783

D. Comparison With State of the Art

We compare our method with the state-of-the-art method
for color fusion in FDM [37]. This method leverages both

Target Naive Ours

Fig. 4. Comparison between a naive solution to the color mixing problem
and our method. Left: The target image. Middle: Result with a naive
approach where the feed rate are adjusted only considering the current pixel.
Right: Our approach.

fusion and superposition of materials to obtain the final
color. First, each layer is decomposed into a few sub-layers.
Subsequently, a fixed fusion ratio for each sub-layer is
computed. Assuming N filaments, to compute the fusion
ratio for each sub-layer and the height of the sub-layer at
each printing location, the smallest simplex in RN−1 that
contains all colors of the layer should be found. As noted in
the original work [37], this combinatorial problem becomes
prohibitively complex with increasing the number of base
filaments. Therefore, the authors limit their color output to
CMY.

We can see a result of this limitation in Figure 5 top
right. The lack of black and white primaries results in loss
of contrast. Moreover, as the mixing ratio and the output
color are not linearly linked, the choice of using a linear
interpolation-based approach [37] to compute the mixing
ratio creates errors in the final result. We can observe the
effect of this assumption as undesired color shifts in the final
output. In contrast, our method can leverage the full color
gamut of fusing five materials, (Figure 5 bottom left). We
can also observe that the superposition of single-colored sub-
layers used in this method [37] reduces the spatial artifacts
(Figure 5 bottom right). However, the sub-layer strategy
creates two major drawbacks:

1) To switch from a sub-layer to the next, the material
present in the nozzle need to be purged. This require
building a separate structure close to the print [46];

2) The printing time multiplies by the number of sub-
layers.

Our method does not suffer from these drawbacks as it
deposits the materials without any pauses.

E. Ablation Study on Activation Function

To capture the high-frequency details of the input im-
ages, we propose to replace the activation function of the
prevalent ReLU-based networks with a periodic activation
function. Then, we further tame it with a handy mapping-to-
normalization strategy to relieve the burdens of initialization.
In this section we compare our activation function with
existing alternatives. For comparisons we use the ReLU
activation function due to its widespread use and a sinusoid
activation function initialized as proposed in [43]. The results
of our ablation study are depicted in Figure 6. Our proposed



Target Song et al.

Ours Zoom-in Window

Fig. 5. Comparison with the state-of-the-art method Song et al. [37].
We show the gamut mapped target (we chose an image that was reachable
by the comparison method for fair evaluation), the reproduction result of
Song et al. [37] and ours, and the zoom-in details.

activation function achieved the best performance in the
fusion printing task, showing faster convergence and more
stable training during RL exploration. We can also observe
a significant improvement in image texture. Thanks to the
ability to process high-frequencies our activation function
enables learning of control strategies that successfully elimi-
nate the line artifacts, (Figure 6 middle). Moreover, in regions
with lower frequency texture our activation function achieves
more realistic results, resulting in a better color match,
(Figure 6 right).

Ours

ReLU

Sine

Reward

Iterations0 6e7

-600

R
e
LU

S
in

e
O

u
rs

T
a
rg

e
t

Reproduction Results

Fig. 6. Ablation study on activation function of our control policy.
Left: the reward curves of three comparison methods; Middle and Right:
the reproduction results in terms of the high-frequency and low-frequency
targets.

VII. LIMITATIONS AND FUTURE WORK

Our control policies are trained in a simulated environ-
ment. An interesting direction for future work is to deploy
the policies on fabrication hardware. The largest sim-to-real
gap is introduced at our simulation step. For efficiency we
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Fig. 7. A failure case on the transition between the low-frequency and
high-frequency details.

assume that each material gbvt stays solid immediately after
deposition. This is a fair assumption for many fabrication
processes such as FDM. However, some interesting materi-
als, e.g., silicons or hydrogels, do not posses this property.
To control the deposition of such materials we would need
to model their rheological properties similar to [16].

Our method can handle regions of both high- and low-
frequency spatial details. However, at borders between a
high- and low-frequency regions we can observe transition
artifacts (Figure 7). These artifacts are caused by a difference
in control strategies required to optimally deposit each re-
gion. The shift in the behavior requires some adaptation time
that results in visible artifacts. A potential future work lies
in investigating why there is a need for different strategies
to handle different regions of the image. The insights gained
from our agent could inform future design of multi-material
objects.

VIII. CONCLUSION

In this work we presented a numerical model for multi-
material fusion 3D printing. We utilize our model in a re-
inforcement learning framework to discover optimal policies
for multi-material deposition. To handle material deposition
at high spatial resolution we propose a custom activation
function for our neural network. We evaluate our learned
printing policy on a case-study of color fabrication. We
demonstrate that our reproduced color samples achieve ex-
cellent contrast and chromaticity. Even more importantly,
we show that by carefully controlling the deposition it is
possible to minimize the artifacts inherent in fusing multiple
materials. Our results compare favorable against both com-
mercial baseline controllers and state-of-the-art hand-design
algorithms. We believe that our findings illustrate that by
using optimal control strategies we can break the hardware
limits. We believe that the future of fabrication lies in the
joint design of hardware and software.
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