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(a) Photograph of reproduction with selected inks. (b) Photograph of the painting. (c) Photograph of the cyan-yellow reproduction.

Fig. 1. Our mixed integer ink selection for spectral duotone (two-ink) printing. Our selected inks reproduce a limited-palette painting, made of four paints,
with remarkable accuracy (a). The best pair from a CMYK ink set (cyan and yellow) generates a poor reproduction (c). Duotone reproduction provides powerful
visual evidences of the quality of our ink selection method as the smallest mistake would stand out prominently. While the problem size in this particular
example is small, we show that our method gives the optimal result when selecting tens of inks from libraries of thousands in a reasonable time.

We introduce a novel ink selection method for spectral printing. The ink 
selection algorithm takes a spectral image and a set of inks as input, and
selects a subset of those inks that results in optimal spectral reproduction.
We put forward an optimization formulation that searches a huge combi-
natorial space based on mixed integer programming. We show that solving
this optimization in the conventional reflectance space is intractable. The
main insight of this work is to solve our problem in the spectral absorbance 
space with a linearized formulation. The proposed ink selection copes with
large-size problems for which previous methods are hopeless. We demon-
strate the effectiveness of our method in a concrete setting by lifelike repro-
duction of handmade paintings. For a successful spectral reproduction of
high-resolution paintings, we explore their spectral absorbance estimation, 
efficient coreset representation, and accurate data-driven reproduction.
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1 INTRODUCTION
Fabricating objects with desired appearance properties, known as
appearance fabrication, is an important but complex, multifaceted
research mission. One of the main challenges of appearance fabri-
cation is rooted in materials. Real-life objects are made of a variety
of materials, most of which cannot be used by digital fabrication.
This situation only exacerbates when materials for fabrication come
prepacked from factory. For example, inkjet printers (2D and 3D), de-
spite the flexibility originated in their drop-on-demand technology,
posses a fixed number of inks with predetermined optical properties.
While sufficient for customary applications, freedom in selecting
fabrication materials could bring significant benefits to demanding
domains, such as fine art reproduction [Morovič et al. 2012].

Aiming at further utilizing the inherent flexibility of digital print-
ers, we propose to adapt the printing materials to the appearance
of input. This ensures that the fittest materials make their way to
the printer’s limited ink channels. In this research we focus on ink
selection for spectral painting reproduction, where we measure and
print the reflectance1 of a painting. We select the optimal subset
1Computer graphics refers to “reflectance” as the angular surface reflection (BRDF). In
color science, on the other hand, the term reflectance (along with “spectrum/spectra”
and “spectral reflectance”) denotes spectral, diffuse color. In this manuscript, we adopt
the latter convention.
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from a large library of inks, such that it results in the most accurate
appearance reproduction of the input. There are however signifi-
cant computational challenges facing the ink selection problem. The
main challenge is the huge combinatorial search space that renders
traditional methods, such as genetic algorithm, ineffective in real-
world scenarios. Further challenges include the spectral modeling
of the combination of a large number of inks, and evaluating the
performance of different ink subsets on high-resolution spectral
images.
We introduce a novel algorithm that solves the spectral ink se-

lection problem reliably and efficiently. The binary nature of the
ink selection problem makes integer programming a viable solution.
We demonstrate, however, that a problem formulation in terms of
reflectance is intractable. A reflectance-based ink selection problem
leads to a mixed-integer nonlinear programming (MINLP) which is
non-convex with no optimality guarantee and very challenging to
solve. Ourmain insight is to solve the physical dual of the reflectance-
based ink selection problem. Instead of searching for inks whose
reflectances result in the most faithful reproduction of a painting’s
reflectance, we explore the ink library to find inks’ absorbances
that optimally reproduce the painting’s spectral absorbance. The
insignificant scattering of printing inks allows us to perform color
mixing in the absorbance space. The absorbance-based problem
formulation results in a mixed-integer linear programming (MILP)
whose continuous relaxation is convex and scales gracefully with
larger problems.
The spectral absorbance of an ink or a painting can be obtained

from its spectral transmittance using a simple analytical formula. But
measuring the transmittance of a painting on a non-transparent sub-
strate is challenging. We thus first measure the spectral reflectance
of paintings relying on RGB-based spectral reconstruction [Connah
et al. 2001]. We then use a data-driven method based on a neural
network to map the measured reflectances to their corresponding
transmittances. The ink-selection problem requires a set of new
optimization variables for each pixel in the candidate image for
reproduction. This can lead to huge optimization problem when
dealing with high-resolution spectral images. We show that extract-
ing a small, representative subset, or coresets, of all spectra present
in the painting can effectively replace the use of all spectral pixels
during ink selection. For a thorough evaluation of our ink-selection
method, we devise a complete system of physical reproduction
of paintings. We demonstrate high-fidelity spectral reproduction
through spectral separation using a neural network, a library of 43
inks, and a custom printing setup. Furthermore, we make a simple
but important observation about the neural spectral separation [Shi
et al. 2018] where we adapt the neural network to different inputs
leading to a considerable accuracy gain.
Our main contributions are:

• A versatile formulation based on mixed-integer programming
for the problem of ink selection by solving this problem in
the absorbance space.

• An analysis of different coreset approximation algorithms
that represent high-resolution spectral images with signifi-
cantly lower number of data points.
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Fig. 2. A halftone patch made of three inks gives rise to 8 Neugebauer
primaries. Such a halftone is represented by its area coverage vector (here
of size 3). The area coverage of Neugebauer primaries (here of size 8) are
computed using Demichel equations (Equations 2 and 4).

• A thorough spectral reproduction framework (including cap-
ture and print) of paintings.

• An adaptive neural separation strategy for higher reproduc-
tion accuracy.

To ensure full reproducibility of our results, both implementation
and data will be released. Notably, a spectral dataset of captured
paintings, the print datasets for calibrating our neural networks,
our ink library, and the set of optimal inks for each painting will be
publicly available.

2 BACKGROUND

2.1 Halftone Spectral Prediction
Almost all printers are binary devices: they either print at a given
location or leave it unprinted. For printing images with a continu-
ous tone impression, halftoning algorithms take advantage of the
low-pass filtering property of the human visual system [Kang and
Anderson 1992]. Halftoning methods create spatial binary patterns
of dots with different sizes and spacings so that, when viewed from
a sufficient distance, give the impression of continuous tone with
the least objectionable artifacts. In most color halftoning methods, a
halftone layer is created for each ink separately and the final color-
halftone image is formed by the superposition of all layers. The
partial superposition of different binary ink layers helps creating a
limited number of additional colors, known as Neugebauer primaries
(Figure 2).

Any spectral reproduction workflow requires a prediction model
that computes the reflectance of a printed halftone. Spectral Neuge-
bauer model [Yule 1967] is the most widely known spectral predic-
tion model for calculating the spectrum r of a halftone

r = w1r1 +w2r2 + · · · +wk rk , (1)

where ri denotes the spectrum of the Neugebauer primaries made
of base inks and their possible superpositions each withwi relative
area in the halftone, known as area coverage. The Neugebauer model
can be extended to the well-known Yule-Nielsen modified spectral
Neugebauer model [Hersch and Crété 2005; Chen et al. 2004] in a
straightforward manner by mapping the reflectances to 1/n space,
n being an empirical real number known as the Yule-Nielsen value.
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We can easily find the spectra of the Neugebauer primaries, e.g.,
by first printing and then measuring them using a measurement de-
vice, such as a spectrophotometer. To determine the area coverages
of Neugebauer primaries, we rely on a set of probabilistic equations
known as the Demichel equations [Demichel 1924]. Demichel’s in-
sight was that printing k superposed dot layers gives rise to 2k
Neugebauer primaries. Furthermore, an ink area coverage gives its
presence/absence probability in the halftone. Assuming ink dots are
laid out independently from one another2, the computed area cov-
erage (or probability) of a given Neugebauer primary in a halftone
is the multiplication of the presence/absence probabilities (or area
coverages) of its constituting inks which are given for any halftone.
Let us further clarify by considering the classic CMY print with

cyan, magenta and yellow inks (Figure 2) with area coverages a, b
and c , respectively. The resulting halftone is composed of 8 Neuge-
bauer primaries: white (w), cyan (c), magenta (m), yellow (y), blue
(b), green (g), red (r) and black (k) whose weightswx is given by the
Demichel equation:

ww : w000 = (1 − a)(1 − b)(1 − c) wr : w011 = (1 − a)bc

wc : w100 = a(1 − b)(1 − c) wд : w101 = a(1 − b)c

wm : w010 = (1 − a)b(1 − c) wb : w110 = ab(1 − c)

wy : w001 = (1 − a)(1 − b)c wk : w111 = abc .

(2)

In this notation,wc (w100), for example, denotes the area coverage
of cyan primary by finding its probability which is the probability
of presence of cyan ink (1) and absence of magenta (0) and yellow
(0) inks. Later, for the first time to the best of our knowledge, we
introduce a general and compact Demichel formula in Equation 4.

2.2 Mixed Integer Programming
Mixed-Integer Programming (MIP) is a category of mathematical
optimization problems in which all or some of variables are integers
[Floudas 1995]. The objective and constraints of the optimization
problem can be linear, quadratic or other non-linear functions. MIP
problems are inherently non-convex because the feasible region of a
problem with integer variables is not convex. There are however im-
portant implications if the continuous relaxation of a MIP is convex.
That is, if we relax the MIP by ignoring the integrality condition,
then we obtain a convex optimization problem. The solution of a
convex optimization problem can be guaranteed to be the optimal
solution of that problem. Therefore, the solution of the original MIP
problem can be compared against the global optimum of its con-
tinuous relaxation and give a reliable measure of optimality, called
the duality gap. Note that an important class of MIP problems with
convex continuous relaxation is the mixed-integer linear programs
(MILP).

MIP problems are solved by a variety of algorithms, such as
branch-and-bound [Borchers and Mitchell 1994] and cutting planes
[Marchand et al. 2002]. There are several open-source and commer-
cial solvers that are based on these methods and can solve MIP prob-
lems efficiently [Lofberg 2004]. The commercial solvers [Gurobi Op-
timization 2018] have better performances, in terms of computation

2Amidror and Hersch [2000] extensively discuss the validity of this assumption for
different halftones.

time and types of problems they can solve, especially for larger scale
problems. The ink selection problem is inherently a binary decision
problem. The proposed formulation, based on the absorbance and
with further linearization, allows us to develop a tractable MILP
optimization problem with linear constraints and linear objectives.
The optimization can be efficiently solved by existing commercial
solvers to determine the optimal set of inks with strong optimality
evidences.

2.3 Related Work
Ink Selection. In a brute-force ink selection, we can evaluate the

reproduction capacity of anyN -ink subset of aK-ink library on each
of P spectral pixels of the captured painting. This combinatorial
search space is too expensive to compute for any problem with a
real-life size. A handful of previous works on this topic [Stollnitz
et al. 1998; Power et al. 1996; Tzeng and Berns 1999] have therefore
resorted to either stochastic algorithms or hand-crafted heuristics.
Power et al. [1996] investigate the ink selection problemwithin their
duotone reproduction of color images. Using a simulated annealing
approach with an objective function that evaluates the colorimetric
performance of any pair of inks, they select the two best inks that
result in the color matching of an input image. Stollnitz et al. [1998]
try a similar approach for custom-ink color reproduction except
that they improve the optimization by using a genetic algorithm
instead of simulated annealing. Tzeng and Berns [1999] use heuris-
tics to reduce the size of the ink library first, and then evaluate
the reproduction accuracy of all remaining ink subsets. Contrary to
these methods, we introduce a novel ink selection formulation based
on mixed-integer programming [Belotti et al. 2013] that can solve
very large problems efficiently with strong optimality evidences.
In Section 6.6, we show comparison to genetic algorithm, the most
promising previous method.

Spectral Reproduction. Spectral 2D printing is an established field
of research in color reproduction. We refer the readers to Shi et al.
[2018] for a nice literature summary. The aims of spectral reproduc-
tion is to recreate a spectral image whose pixels represent spectral
bands sampled throughout the visible range of the electromagnetic
spectrum [Berns et al. 2008]. The main motivation behind spectral
reproduction is to avoid metamerism [Wyszecki and Stiles 1982]
where the color of a reproduction matches the original under one
light source, but shows a mismatch under another light source with
a different spectrum. In order to expand the spectral gamut [Rosen
and Derhak 2006] of printers, N -ink printers employ custom inks
in addition to the process CMYK [Ostromoukhov 1993]. The most
important challenge of spectral reproduction with N -ink printing
(even with N = 6 or 7) is the forward modeling of the combination
of multiple inks. The forward modeling most commonly relies on
the Yule-Nielsen but this model is known to scale very poorly with
the number of employed inks (N ), both in terms of the model com-
plexity and the number of required calibration prints [Babaei and
Hersch 2016].
Our ink selection method encounters the same problem, albeit

on remarkably larger scales: we need to deal with modeling any
N -ink combinations of K inks in our library with K ≫ N . Our
solution for dealing with this problem is to rely on an approximate
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Fig. 3. Our pipeline to reproduce paintings including ink selection and neural-network spectral reproduction. The bottom rectangular box shows the steps for
reproducing a painting after the ink selection is performed and the inverse neural network, based on selected inks, is computed.

model, based on a linear spectral absorption, in the ink selection
optimization where many ink combinations exist. Apart from its
lightweight calibration (only one spectral measurement per each
ink in the library), it leads to a highly scalable optimization problem.
We demonstrate that for obtaining high-accuracy results, more data-
intensive prediction models could be later used for final spectral
reproduction using selected inks. In particular, we rely on a data-
driven method based on neural networks [Shi et al. 2018]. We show
that the accuracy of this network can be considerably improved by
adapting it to the input content without requiring additional data.

Color Reproduction of 3D Objects. The recent introduction of multi-
channel inkjet 3D printers has enabled creating physical objects
with spatially-varying surface colors. Inkjet 3D printing, the off-
spring of digital 2D printers, juxtaposes voxels with different colors
at high volumetric resolutions resulting in unprecedented quality.
The recent works address different challenges from spatial place-
ment of materials, through halftoning [Brunton et al. 2015] or con-
toning [Babaei et al. 2017] to suppressing subsurface scattering
crosstalk [Elek et al. 2017] and reproducing the color of thin geo-
metric features faithfully [Sumin et al. 2019]. All these works can
potentially benefit from our ink selection algorithm (see Section 7).
Ink selection could also be useful in the fused filament fabrication
as hinted by Song et al. [2019].

3 OVERVIEW
Our proposed method takes a painting, finds the optimal inks for
its spectral reproduction, and creates the reproduction using a data-
driven approach. Figure 3 sketches different steps of our method.
Note that the paper does not necessarily follow the order shown in
this figure.
Our end-to-end spectral reproduction begins with capturing an

RGB image of a painting (as we don’t have access to an accurate
spectral camera). Since incorporating all pixels of the image gives
rise to prohibitively large ink-selection optimizations, we extract a
representative set from the painting, called the coreset (Section 5.2),
and use this set in the ink selection method. We then reconstruct
the coreset’s spectral reflectance from the captured RGB images
using a nonlinear regression with high accuracy (Section 6.2). As we
perform the ink selection in the spectral absorbance space, spectral

reflectance of the coreset is converted into spectral transmittance,
handled by a reflectance-to-transmittance (R2T) neural network
(Section 5.1). From spectral transmittances, we obtain the spectral
absorbances using an analytical formula. The spectral absorbances
of our inks in the library are also provided. Given the coreset of
a painting and the ink library in the spectral absorbance space,
we carry out the ink selection based on a mixed integer linear
programming approach (Section 4.2). The MILP-based ink selection
outputs, from within the library, a desired number of inks that best
reproduce the painting.
Once the inks are selected, we rely on an accurate data-driven

model to reproduce input spectral images faithfully. To that end, we
print a large dataset of halftones made of selected inks and obtain
their spectral reflectances. We then train, in a two-step approach
(Section 5.3), an inverse neural network that performs the neural
spectral separation: mapping any reflectance to its corresponding ink
area coverages. Finally, for actual reproduction of the input painting
(shown in a rectangular box in Figure 3), we estimate its spectral
reflectance and feed it, pixel by pixel, to the inverse network. The
resulting ink area coverage layers are halftoned independently and
printed.

4 MIXED-INTEGER INK SELECTION
In this section, we introduce our optimization formulation for ink
selection based on mixed-integer programming. We start with the
natural choice of optimizing in the spectral reflectance space (Sec-
tion 4.1) and show that the reflectance-based problem is intractable.
Although we will not use the reflectance-based problem for results
shown in this paper, we build on its mathematical formulation to
introduce a significantly more scalable ink selection method in the
absorbance space (Section 4.2).

4.1 Reflectance-based Ink Selection Formulation
In this section, we put forward our mixed-integer formulation for
selectingN inks from an ink library composed ofK inks with known
spectral reflectances. The N selected inks will best reproduce a given
spectral image represented via its coreset by P pixels each containing
a spectral reflectance of size S (due to sampling spectral reflectances
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at S points). We write the optimization problem as

argmin
x,W

H D(W) − R

F (3a)

xk ∈ {0, 1} ∀ k ∈ γ (3b)
K∑
k=1

xk ≤ N (3c)

Wk ,p ∈ R ∀ k ∈ γ , ∀ p ∈ ϕ (3d)
0 ≤ Wk ,p ≤ xk ∀ k ∈ γ , ∀ p ∈ ϕ (3e)
γ = {1, 2, · · · ,K} , ϕ = {1, 2, . . . , P} , (3f)

where ∥·∥F denotes the Frobenius norm and we have the following
entities:
Variables

• x is the ink-selection variable, a binary vector of size K × 1
whose k-th element (pointing at k-th ink in the library) is
denoted by xk .

• W is the matrix of continuous variables representing the area
coverages of each library ink corresponding to each pixel in
the input image, thus a matrix of dimension K × P (Wk ,p
denotes the element in the k-th row and p-th column).

Parameters
• N is the maximum number of desired inks to be selected from
the library N < K .

• H is the matrix of D Neugebauer primary reflectances with
dimensions S×D which can be measured for small libraries or
approximated for the large ones [Phan Van Song et al. 2016].

• R is the spectral image, a 2D matrix with dimensions S × P
for which we select optimal inks.

Functions
• D(·) is the Demichel operator, a nonlinear transformation
applied on W (Equations 2 and 4). Collectively, this operator
maps the ink area coverage matrixW with dimensions K ×

P to the Neugebauer primary area coverage matrix A with
dimensions D × P (D = 2K ).

Simply put, this formulation continuously changes the area cov-
erages (W) of different inks in the library, predicts their spectral
reflectances with the Neugebauer model3 (the term H D(W)), min-
imizes the difference between the predicted reflectances and the
target (R), and gives the best up to N inks for this purpose. Although
we are not necessarily interested in optimal ink area coveragesW,
varying them is imperative as it explores the spectral gamut of the
considered inks.
A set of K independent, continuous variables (corresponding to

each column ofW) is required to explore each of P spectral pixels of
the target spectral image, hence the size of W (K × P ). This implies
that adding a pixel to a spectral image, or more exactly to its coreset,
adds a new column in W, i.e., an additional K continuous variables.
Moreover, adding an ink to the library introduces a new row in W,
i.e., an additional P continuous variables. In contrast, the binary ink
selection vector only relates to the inks in the library and not the

3We may use the Yule-Nielsen model instead and, working in 1/n space, have the same
implications.

target image, leading to a K-vector x. Adding an ink to the library
introduces only a single binary element in x.
The inequality constraint 3c along with the set of K × P other

inequalities (3e) ensure that at most N inks are used for reproduc-
ing the considered P spectra. These constraints confine different
columns of W to have the same up to N non-zero elements. Indices
of these non-zero elements in eachW’s column match the indices of
non-zero elements in vector x and pinpoint the location of optimal
inks in our library.
D(·) is the Demichel operator for which we gave an example of a

three-ink CMY halftone in Equation 2. We introduce here a more
compact form of this operator for any K-ink halftone. For an image
with P pixels, it should be applied on all ink area coverages of that
pixel, hence γ in notationWγ ,p in the following equation. We have
A = D(W), such that

Ad ,p =
(
D(Wγ ,p )

)
d ,p =

K∏
k=1

1 − Ud ,k − (−1)Ud ,k Wk ,p , (4)

where U is a D × K matrix containing all D = 2K binary encoding
of a string of length K :

U =



0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...
...
...
...

1 1 . . . 1


. (5)

While a novel, valid ink selection formulation (Equations 3a-3f),
optimizing this problem is far from trivial. First, the size of the prob-
lem grows exponentially with the size of the library. This includes
the size of the Neugebauer primary matrix H with a rate of 2K ,
and the number of terms made of our continuous variables W corre-
sponding to the rows of A in Equation 4 (recall that the number of
variables grows linearly with the the library size). Second, due to the
Demichel operator D(·), the objective function becomes nonlinear
and this nonlinearity increases with more inks in the library. The
nonlinearity results from the multiplication of continuous variables
and there is not any suitable linearization technique to cope with
this type of non-linearity [Bisschop 2012]. Thus the optimization
problem is a mixed-integer nonlinear programming (MINLP) which
generally is non-convex. Even the state-of-the-art commercial MIP
solvers face serious difficulties to address this type of problem and
there is no guarantee for the solution to be optimal.

4.2 Absorbance-based Ink Selection Formulation
With these observations, we rethink the problem of optimal ink
selection at a more conceptual level. Our main insight is to solve the
physical dual of the ink selection problem by transferring the prob-
lem from the reflectance space to the absorbance (or equivalently
transmittance) space. The question then becomes: which inks’ ab-
sorbances do reproduce a given spectral absorbance image optimally?
The main implication of using the absorbance space is that we can
model the mixing of inks themselves rather than their Neugebauer
primaries, evading the Demichel equations and its scalability and
nonlinearity issues.
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Inspired by the literature [Babaei et al. 2017, 2012; Berns 1993],
we can use the thickness of each ink (instead of primaries) in a
linear manner to predict the spectral absorbance of the halftone.
While a concrete explanation of why in the absorbance space the
primaries can be bypassed requires further studies, intuitively it
could be related to the logarithmic conversion. Similar to the use
of densities in photographic printing [Evans 1948], the absorbance
space emphasizes the (important) absorptive regions of the inks
spectra which have small values in the reflectance space. Thus, in
the absorbance space, the ambiguities of the contribution of inks in
the aggregate spectrum of a halftone is significantly reduced. In an
early experiment, we performed ink selection using a linear model
of inks (and not primaries) reflectances and obtained completely
inaccurate results.
We propose the absorbance-based ink selection formulation as

argmin
x,C

P∑
p=1

S∑
s=1

��(G C − Q)s ,p
�� . (6)

We use the sum of absolute differences (equivalent to 1-norm in
vectors) and after a linearization step, have a completely linear mixed
integer problem:

argmin
x,C,Z

P∑
p=1

S∑
s=1

Zs ,p (7a)

Zs ,p ≥ (G C − Q)s ,p ∀ s ∈ ψ , ∀ p ∈ ϕ (7b)
Zs ,p ≥ −(G C − Q)s ,p ∀ s ∈ ψ , ∀ p ∈ ϕ (7c)

xk ∈ {0, 1} ∀ k ∈ γ (7d)
K∑
k=1

xk ≤ N (7e)

Ck ,p ∈ R ∀ k ∈ γ , ∀ p ∈ ϕ (7f)
0 ≤ Ck ,p/t ≤ xk ∀ k ∈ γ , ∀ p ∈ ϕ (7g)

γ = {1, 2, · · · ,K} , ϕ = {1, 2, . . . , P} , ψ = {1, 2, . . . , S} , (7h)

which has similar mathematical and conceptual implications to the
reflectance-based formulation. Apart from the repeated entities in
Equation 3, we have the following:
Variables

• C is the matrix of the library ink thicknesses corresponding
to each pixel in the input image, thus of dimension K × P (it
is the counterpart ofW in reflectance formulation).

• Z is a matrix of size S×P containing a set of auxiliary variables
that linearize the absolute value function (Equation 6) through
constraints 7b and 7c.

Parameters
• G is the matrix of (measured) spectral absorbances of the
library inks (S × K ).

• Q is the target, spectral absorbance image, a matrix with
dimensions S × P .

• t controls the maximum thickness of library inks.
Note that the term G C gives the modeled spectral absorbance im-
age through linear mixing of the measured ink absorbances G in

the library with weights C. We discuss how to obtain spectral ab-
sorbance image Q in Section 5.1. As in the case of reflectance-based
optimization, we are not interested in the optimal thickness values
C but rather the binary decision variables x. This frees us from
finding any explicit relationship between ink thicknesses and ink
area coverages. Moreover, by setting a parameter t in Equation 7g
we let the optimization explore the thicknesses beyond 1. In other
words, the inks can have more than a single layer in a halftone. Note
that in practice also our custom printer driver (Section 6.1.1) allows
us to print multiple layers of each ink. In all our experiments we set
t to 4 allowing each ink in the library to have up to four layers.

The optimization formulations in Equations 3 and 7 bear a lot of
similarities. The key difference is that in the proposed absorbance-
based formulation the Demichel operator is bypassed, leaving us
with a mixed-integer programming that scales gracefully with the
size of the ink library. The resulting optimization problem is a mixed
integer programming with linear objective and linear constraints.
This problem can be efficiently solved with existing commercial
solvers for a large ink library.

5 SPECTRAL REPRODUCTION
With the optimization in hand, there still remain a few questions
to address before being able to select the optimal inks for an input
spectral image, and employ the selected inks for a final reproduction.
First, how do we obtain spectral absorbances (Section 5.1)? Second,
how do we handle high resolution images with potentially millions
of spectra during ink selection (Section 5.2)? Third, having selected
optimal inks for a particular image, how do we use those inks for
high-fidelity spectral reproduction (Section 5.3)?

5.1 Reflectance to Transmittance Network
The spectral absorbance for each visible wavelength (Aλ ) is most
conveniently obtained from its corresponding spectral transmittance
(Tλ ) using Beer-Bouguer law

Aλ = − lnTλ . (8)

The transmittance of the ink library, when printed on a transparent
substrate, is straightforward to measure using a spectrophotometer
or a camera (Section 6.2). The challenge is the transmittance mea-
surement of the paintings, which are painted on relatively opaque
substrates, such as paper and canvas.
We propose to compute the spectral transmittance of an image

from itsmeasured spectral reflectance. Unlike the Fresnel reflectance,
which is related to transmittance in a simple way (T = 1 − R), the
bulk reflectance of a material measured on a diffuse substrate has a
non-trivial relationship with its transmittance due to, for example,
light scattering and multiple reflections between the substrate and
the print-air interface across the inks. We therefore resort to a data-
driven method based on a neural network to solve this problem
by mapping measured spectral reflectances to their counterpart
transmittances. In the absence of fluorescence, there is a one to
one correspondence between reflectance and transmittance. This
implies that the optimal ink selection in absorbance (transmittance)
space gives an optimal answer for the original reflectance space. We
train a fully-connected feed-forward neural network, R2T, that takes
a spectral reflectance and gives a spectral transmittance. The loss
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function, for a single training example, is the (spectral) root mean
square error percentage (RMSE%) traditionally used for evaluation
in color science

RMSE%
(
rgt, tgt

)
=

1
√
S

R2T (
rgt

)
− tgt


2 × 100. (9)

In this equation, rgt is a member of the ground truth reflectance
data set, tgt is a member of the ground-truth transmittance data set,
R2T is the reflectance to transmittance neural network model, and
S , as in previous section, is the size of spectral vectors.

5.2 Ink Selection Coresets
An important challenge in optimal ink selection is to incorporate
all spectra in the target spectral image. The number of pixels in
a captured painting, denoted by P in Equations 3 and 7, can eas-
ily amount to millions. Unlike finite-sum minimization problems
[Schmidt et al. 2017], typically found in machine learning, the num-
ber of optimization variables in our formulation grows with the
number of pixels P . As we mentioned earlier, this is because the
nature of our problem requires to assign a new set of (K ) continuous
variables to each spectral pixel. Therefore, as the number of pixels
increases so does the size of our optimization variables W and C
(both of size K × P ) in the optimization problems 3 and 7.

This motivates us to investigate different coreset estimation meth-
ods for ink selection. With origins in computational geometry, a
coreset is a subset that can serve as a proxy for an original set [Agar-
wal et al. 2005]. The result of a particular algorithm applied on a
full dataset is approximated when the same algorithm is applied on
the dataset’s coreset4. In our case, a coreset is extracted from the
full set of painting’s pixels.
As the task is similar to color quantization, we evaluate (Sec-

tion 6.3) some clustering methods, namely k-means and k-medoids
clustering. Furthermore, we investigate the geodesic simplex vol-
ume maximization [Heylen et al. 2011] a well-known, nonlinear
algorithm in remote sensing for performing spectral unmixing. Spec-
tral unmixing is concerned with computing the spectra of distinct
materials that are mixed within a single satellite pixel, which are
know as endmembers (equivalent to coreset) [Keshava and Mustard
2002].

5.3 Neural Spectral Separation
The optimal inks for reproduction of a particular painting, or more
exactly its coreset, are selected using an approximate forward model
based on linear combination of spectral absorbances of inks. For
actual spectral reproduction, we run an accurate, data-driven, neural
network prediction model. This network is very similar to the one
proposed by Shi et al. [2018] for reproducing spectral oil paintings
except we use it for predicting multi-layer halftones while Shi et al.
[2018] predict contone ink stacks. The goal of the neural spectral
separation, composed of a forward and an inverse network as a de-
coder and encoder respectively, is to take a spectral reflectance as
input and estimates a halftone area coverage that, after printing,

4As an example, the convex hull of a point set is a coreset for computing the diameter
of the set.

Target
Reflectance

Predicted
Reflectance

Area
Coverage Forward NetworkInvers Network

Spectral Loss

Area Coverage
Regularization

Fig. 4. The neural spectral separation [Shi et al. 2018], composed of a for-
ward and an inverse network, finds a set of ink area coverages that approxi-
mates any input reflectance.

reproduces the target spectra. An interesting feature of this archi-
tecture, originally proposed by [Tominaga 1996], is to first train the
forward network that predicts the reflectance of any halftone. In
the second phase of training, the inverse network maps reflectances
to halftone area coverage while the forward network is used only
for spectral error prediction without being trained (see Figure 4).
The network can be trained using printed patches with known

area coverages pairedwith their correspondingmeasured reflectances
(Section 6.4). Note that the spectral separation network is trained
for a given set of inks. That is, a separate training is required for
printing an input image with a set of inks specifically selected for its
optimal reproduction. The loss function has a spectral term (similar
to Equation 9) but not a colorimetric one. Given the ink selection is
carried out on a spectral basis, we chose to stay with a purely spec-
tral reproduction. As multiple halftone configurations can produce
the same spectra, we introduce a halftone area coverage regulariza-
tion term to limit the total ink amount printed in order to prevent
the paper wetting.

5.4 Adaptive Neural Spectral Separation
Having trained a forwardmodel using halftone-reflectance pairs, the
role of the inverse network is to take a reflectance and map it into
a set of halftone area coverages. In traditional spectral separation
methods, the area-coverage for a single input reflectance is com-
puted by numerically inverting the employed forward model, such
as the well-known Yule-Nielsen spectral Neugebauer [Rolleston and
Balasubramanian 1993]. Thanks to the expressive power of neural
networks [Hornik et al. 1989], the neural inverse model proposed
by Shi et al. [2018] is computed for a distribution of reflectances at
once. At the test time, each input spectrum is separated using the
computed weights and biases of the inverse network.

We crucially observe that the inverse network need not be trained
in a supervised fashion. That is, having trained the forward net-
work using halftone-reflectance pairs, training the inverse network
requires only spectral reflectances thanks to the encoder-decoder
architecture. Thus, instead of computing a universal inverse model
using a representative set of spectra (as in [Shi et al. 2018]), we
propose to adapt the inverse network to the set of input spectra
directly at the test time. This adaptation is possible by both training
the network (for a particular input) from the scratch or build on the
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existing universal network similar to transfer learning [Tan et al.
2018b]. While we rely on a universal inverse network for producing
the majority of the results, we evaluate the effect of this modification
in Section 6.8.

6 RESULTS AND EVALUATION

6.1 Experimental Setup
6.1.1 Printing Hardware. As the reproduction platform, we use Ep-
son Stylus Photo R2880, a 720 dpi, 8-channel 2D printer with Piezo
inkjet printhead. The printer is expected to place different layers of
halftone patterns, sent to printer as a sequence of binary bitmaps,
on the paper as precisely as possible. In practice, the printer’s de-
fault driver may change these patterns at will. We therefore rely
on a custom-written printing driver developed using the printer’s
command language programming5. In addition to precise printing
of binary patterns, our driver can print multiple layers of the same
ink, an otherwise non-straightforward task.

6.1.2 Ink Library. We develop a library of 43 different inks. We
begin with a larger number (around 80) of inks and keep those inks
which are jettable and don’t show clogging or other inconsistency
issues. Our library consists of pigment-based and dye-based inks
used in both thermal and Piezo inkjet printhead technologies. The
list of inks in our library and our paper substrate along with their
spectral plots are included in the supplementary materials.

6.1.3 Paintings and Paint Swatches. We collaborate with an artist
[Asadi 2017] who produces different paintings and a manually pre-
pared swatch made of uniform paint patches. For our watercolor
paintings, we purchase 14 Schmincke paint tubes. The list of paints
and their spectral reflectances are reported in the supplementary
materials. Wemix these paints manually to prepare our paint swatch
made of 423 patches, each with different mixing ratios so that the
swatch is a representative of the colors present in our paintings.
Note that our ink selection method does not require a swatch made
of paints used in each input painting. The main advantage of the
swatch is that we can obtain ground-truth spectral measurements,
with a spectrophotometer, and use them in the spectral reconstruc-
tion stage for a better accuracy (Section 6.2); an accurate spectral
camera would render the use of swatch obsolete. Apart from being
used in spectral reconstruction, the paint swatch proves useful in
some quantitative evaluation of our method notably the evaluation
of coreset methods (Section 6.3).

6.2 Spectral Reflectance and Transmittance Acquisition
and Reconstruction

Spectrophotometers are the standard tools for accurate measure-
ment of spectral reflectances and transmittances. Unfortunately,
they are unable to capture the spatially varying spectra found, e.g.,
in paintings. Spectral cameras with dedicated hardware can capture
the visible spectrum at high spatial resolution. Despite the high cost,
they might still sacrifice the spectral accuracy [Shi et al. 2018]. We
adopt a more cost-effective approach by using a color camera and
relying on spectral reconstruction to convert RGB signals to spectral
5The printer’s programming guide is not anymore available online but can be found
on the project’s website.

reflectances [Maali Amiri and Fairchild 2018]. This well-known in-
verse problem can be solved with remarkable accuracy since most
natural and man-made materials, including our inks and paints,
have smooth spectra. The smoothness property implies that the
true dimensions of most spectra is significantly lower than 31 (the
typical sampling rate from 400 to 700 nm at 10 nm intervals which
we also use in all our experiments) [Maloney 1986]. In our case,
a principal component analysis (PCA) on the watercolor swatch
reveals that the paint spectra can be represented almost perfectly
using only 8 dimensions.

We use a nonlinear regression for spectral reconstruction, which
learns the relationship between camera signals and ground truth
spectral data measured by a spectrophotometer. In order to have
a more accurate spectral reconstruction for a given type of sur-
face, our regression learns a separate model with ground truth data
for that surface. The watercolor swatch (Section 6.1.3) is used for
spectral reconstruction of paintings, printed patches on paper are
used for spectral reconstruction of thousands of small patches used
in calibrating the spectral separation network (Section 6.4), and
printed patches on transparency sheets are used for spectral trans-
mittance reconstruction of small patches used in the R2T network
(Section 6.5). The ground truth samples are printed or painted large
enough (2 × 2 cm) so they can be measured by a spectrophotometer.
In this work, all ground-truth spectral transmittance and reflectance
measurements are performed by X-Rite Color i7, a sphere spec-
trophotometer. The measurement geometry, in accordance with
observer’s experience, provides a diffuse illumination and discards
the specular reflection.

In order to evaluate the spectral reconstruction quality of water-
color paints, we learn the regression model using 399 patches in our
paint swatch and test it on the remaining, unseen 24 patches. This
model results in average RMSE = 2.77% and average CIEDE2000
color difference (∆E00) [Sharma et al. 2005] 2.41 and 2.74 under D65
and A illuminants, respectively6. For all CIELab calculations in this
work we use the paper substrate as the white reference.

To ensure the reconstructed spectra are not metameric to the
original ones, we plot the 24 test spectra against their ground-truth
measurements carried out by the spectrophotometer in Figure 5.
We observe that the reconstructed paint spectra follow the spec-
trophotometric measurements very well without sinusoidal inter-
ceptions typical to metameric pairs. In order to see a more detailed
assessment of the metamerism potential, we refer the reader to the
supplementary materials.

6.3 Coreset Estimation Evaluation
In this section, we evaluate different coreset estimation methods
discussed in Section 5.2. We compare the ink selection performance
when carried out on an entire set against when done on a subset
extracted from that original set. We cannot use an image as orig-
inal set since computing the ink selection on millions of pixels is
intractable. Instead, we rely on our watercolor swatch (Section 6.1.3)
as the original set. The swatch includes the underlying paints and
their different mixtures, thus a good representative of the colors in
6Similar experiments evaluating the accuracy of our regression-based spectral recon-
struction method used for estimating the reflectance or transmittance spectra of printed
surfaces are reported in supplementary materials.

ACM Trans. Graph., Vol. 39, No. 6, Article 255. Publication date: December 2020.



Mixed Integer Ink Selection for Spectral Reproduction • 255:9

Wavelength (nm)

R
ef

le
ct

an
ce

 fa
ct

or

R
econstructed

M
easured

0

1

0

1

0

1

400 700
0

1

400 700 400 700 400 700 400 700 400 700

Fig. 5. Spectral reconstruction of 24 test watercolor paint patches compared
against ground truth measurements carried out by a spectrophotometer.
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Fig. 6. The ink-selection loss on the watercolor swatch (423 spectra) as a
function of different coreset methods with different sizes. The dashed line
is the loss obtained using all 423 samples of the original set as the coreset.

our paintings. The performance metric of each coreset is the ink
selection loss computed using Equation 6. More specifically, we:
1) estimate different coresets of the color swatch using different
coreset extraction methods with different sizes, 2) use these subsets
to select the optimal inks, and 3) use the selected inks to compute
the ink selection loss on all spectra of the original set.
Figure 6 shows the ink selection loss on 423 samples of the wa-

tercolor swatch as a function of different coreset sizes for different
coreset estimation methods. As expected, choosing the original set
as the ink selection "coreset" results in the best loss (shown as a
horizontal dashed line). More interestingly, all methods show perfor-
mances near the best possible outcome (dashed line) with relatively
small coreset sizes. This has practical implications for us as it sug-
gests a significantly smaller optimization problem can still work
reliably for ink selection on large input images.

The spectral unmixing using geodesic simplex volume maximiza-
tion [Heylen et al. 2011] performs better than other methods by
converging to the best answer at smaller coreset sizes. Its downside,
compared to other clustering methods, is its slower performance
when applied to high-resolution images. Furthermore, we noticed
that coreset extraction methods behave similarly when applied on
a spectral or an RGB image. Therefore, for all our painting repro-
ductions and analyses we extracted the coreset using a k-means
clustering (k = 200). Another interesting experiment is to use the 14
underlying paints used in the watercolor swatch as the ink-selection
coreset. The underlying paints, shown as a small circle in Figure 6,

RMSE% ∆E00 (D65) ∆E00 (TL84) ∆E00 (A)

Mean SD Mean SD Mean SD Mean SD
Median Max Median Max Median Max Median Max

0.63 0.44 1.41 0.84 1.36 0.78 1.34 0.76Forward 0.61 7.38 1.25 10.45 1.22 9.14 1.21 10.12
0.85 0.66 3.38 2.50 3.22 2.33 3.05 2.16Inverse 0.69 8.94 2.72 14.73 2.54 14.80 2.44 13.40

Table 1. Spectral and colorimetric accuracy of the forward and inverse
networks on a dataset made with 8 original Epson inks.
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Fig. 7. The performance of our linear absorbance model used in our ab-
sorbance-based optimization. For 300 test patches printed with 8 Epson
inks, after converting the modeled absorbances to transmittances using
Equation 8 we obtain mean RMSE = 2.83%, 90 percentile RMSE = 8.57%,
mean ∆E00 (D65) = 2.73 and mean ∆E00 (A) = 3.10. From the test set, 24
randomly picked transmittance spectra are shown here.

perform the best when the coreset size is 14, equal to the number of
underlying paints.

6.4 Evaluation of Prediction Models
In this section, we evaluate the performance of our spectral pre-
diction models, i.e., the linear absorbance model used in our ink
selection optimization along with our neural network based forward
and inverse models.
The role of the absorbance model is to predict the absorbance

spectra of digital mixtures of arbitrary inks in the library. This
analytically simple model works with inks (and not primaries) ab-
sorbances, resulting in tractable optimization problems. It is also
light-weight to calibrate requiring only a single spectral transmit-
tance measurement per ink. We test the absorbance model using
300 printed patches on transparency made with different combi-
nations of the 8 original inks of our Epson printer. Using only the
measured transmittance of the 8 base inks, converted to absorbance
with Equation 8, we obtain relatively high accuracy as shown in
Figure 7 where 24 diverse spectral transmittances from the set of 300
patches are plotted. Note that for each prediction, the ink thickness
(t in Equation 7g) is fitted, as it also occurs during optimization.

For the utmost reproduction accuracy, we use a fully data-driven
neural spectral separation [Shi et al. 2018] whose function is to
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RMSE% ∆E00 (D65) ∆E00 (TL84) ∆E00 (A)

Mean SD Mean SD Mean SD Mean SD
Median Max Median Max Median Max Median Max

4.46 2.73 6.87 3.84 6.76 3.73 6.57 3.65R2T 3.90 19.36 6.21 33.70 6.16 33.74 5.99 33.53

Table 2. Spectral and colorimetric accuracy of the R2T network. This net-
work converts reflectances into transmittances to provide data for ink selec-
tion in the absorbance space. The training dataset is spectral reflectance
and transmittance pairs of the same ink combinations printed on paper and
transparency sheet, respectively.

map a spectral reflectance vector to a vector of halftone area cover-
ages through its inverse network. As explained in Section 5.3, for
computing a meaningful loss, the separation network relies on a
pre-trained forward model that maps the area coverages to spectral
reflectances. The evaluations in this section (and Section 6.7) are
based on a universal inverse model. In Section 6.8, we evaluate the
role of adaptive separation approach.
Both forward and inverse networks of the neural spectral sepa-

ration are multi-layer perceptrons with 4 hidden layers and ReLU
activation functions. The separation network possesses 160 nodes
per layer while the forward network has 300, 300, 200, and 100
nodes per each layer, respectively. The training protocol is identical
for the two networks where we use the Adam optimizer [Kingma
and Ba 2014] with initial learning rate 5 × 10−3 and learning decay
0.95, randomly split the training data into 80% training and 20%
validation, and allow 20 epochs with batch size 31. Both models are
implemented using PyTorch, and trained and tested on an NVIDIA
Titan X GPU very efficiently: training each network takes about 1
minute. At the test time, predicting 1 million spectra takes roughly
10 seconds.

Table 1 summarizes the performance of both forward and sep-
aration networks. The two networks show very high accuracy in
terms of both colorimetric (under several illuminations) and spectral
metrics. The inverse network shows a slightly lower accuracy as its
task is more challenging than the forward network. Recall that these
networks are ink specific. That is, they should be completely recal-
ibrated for each new set of inks. The ink set used to generate the
results shown in Table 1 are the 8 original inks of our Epson printer.
We use 33,945 printed patches for training and testing these specific
networks. As measuring these patches with a spectrophotometer is
extremely time and material consuming, we print all patches in a
small size (1.5× 1.5mm), fit them to 4 A4-size paper substrates, and
obtain their spectra using our camera and spectral reconstruction
procedure.

6.5 Evaluation of the R2T Network
The R2T network (Section 5.1) converts spectral reflectances to
spectral transmittances allowing us to carry out the ink selection
in the absorbance space. Similar to the forward and inverse net-
works, R2T is a fully-connected feed-forward neural network with
the same configurations except it has 5 hidden layers with 350, 760,
160, 100, and 50 nodes, respectively. It is trained using 33,945 pairs of
transmittance and reflectance spectra printed with 8 original Epson
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Fig. 8. (a) The effect of coreset size on MILP optimization time. (b) The
effect of increasing the ink-library size on MILP optimization time. (c) The
spectral absorbance loss of GA at multiple runs each with 50 generations
where the loss of best generation is reported. The dashed horizontal line
shows the loss obtained by MILP for an identical problem. (d) The effect of
increasing the ink-library size on GA optimization time.

inks on transparency sheets and paper substrates, respectively. Both
types of spectra are measured using our spectral reconstruction
procedure. The results of evaluating the R2T network, using 20% of
the data for validation, are shown in Table 2. In practice, the R2T
network, trained on a set of inks, is used to compute the transmit-
tance of paints. As uniform application of paints on transparency is
not possible, we don’t have a direct way of evaluating the network’s
performance on paints.

The R2T network shows an acceptable performance yet its error
is larger than previous networks. One reason for the inaccuracy is
the ink blotting occurring during printing training patches on trans-
parency sheets. Unlike prints on the paper, inks tend to agglomerate
on the transparency sheets resulting in nonuniform patches. In fu-
ture, using a more professional printing setup that avoids blotting,
can enhance the results of this module. Also, analytical flux trans-
fer approaches, such as the four-flux model [Phan Van Song et al.
2016] remain a viable alternative for separating the transmittance
from reflectance. A main advantage of such models would be that
they can operate for inks and paints separately. Nevertheless, our
current approach leads to high-quality ink selection and spectral
reproduction as we will see in next sections.

6.6 Ink-selection Optimization Performance
In Figure 8 we summarize the performance and scalability of the
MILP-based ink selection. We solve all mixed-integer problems us-
ing Gurobi version 9.0.1, a commercial solver with free academic
license [Gurobi Optimization 2018]. We compare MILP with genetic
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algorithm (GA), a method already used for ink selection [Stollnitz
et al. 1998]. Figure 8a shows how MILP scales with the size of the
ink-selection coreset size. In this experiment we use our default
ink library of size 43 and test coresets of size 5 to 420 (at irregular
intervals). From Equation 7, we know that the number of contin-
uous variables increases linearly with the size of the coreset. The
experimental complexity shown in Figure 8a suggests that MILP
scales well with the number of continuous variables enabling incor-
poration of large coresets.
In a second experiment shown in Figure 8b, we fix the coreset

size to 5 (extracted from Cat) and study the effect of the library size
on the MILP performance. As ink library, we work with Munsell
[Tyler and Hardy 1940] spectral samples (around 1200 spectra). We
perform the MILP ink-selection (number of inks N = 5) multiple
times where each time we increase the library size with 50-ink
steps. Once again, Equation 7 suggests that increasing the library
size increases the the number of binary variables in a linear fashion.
This time, however, the optimization time increases more drastically.
Yet we obtain reasonable solution times for even very large library
sizes. Note that the fluctuations in solution time are typical to the
underlying methods used in MILP.
Figure 8c shows the performance of the GA method for select-

ing 5 inks from a library of size 43 for a coreset of size 5. When
performing GA-based ink selection, due to its stochastic nature, we
perform multiple optimizations (each called a run) and allow 50
generations within each run. In Figure 8c, we report the loss of the
best generation of each independent run. For comparison, we solve
the same problem using MILP and show its loss alongside the GA
loss in the same figure. We observe that after 28 runs, GA sometimes
approaches but never outperforms the MILP performance.
Finally, in Figure 8d, we repeat the experiment in Figure 8b but

use GA (instead of MILP) for optimization in order to study the
effect of library size on the GA solution time. The problem setting
is identical in both experiments but as running 50 times the GA
even with 50-ink intervals is slow, we perform it once and multiply
the solution time by 50. We also stop proceeding with GA after the
library size approaches 900 as the method becomes prohibitively
slow. Comparing Figures 8b and 8d, regardless of the the raw values,
reveals that GA is significantly disadvantaged against MILP, in terms
of scaling to problems with large sizes of ink library.
On a more general note, all solutions of different MILP-based

ink selections in this paper reached a user specified duality gap
of 10−4. This means the objective value of the selected inks using
MILP is at most 10−4 loss unit far from the global optimal of the
relaxed, convex problem. Given the magnitude of our absorbance
loss, we can ensure our solution is practically optimal. This result
has significant implications compared to stochastic methods: we
can solve ink selection problems with high confidence using MILP.

6.7 Spectral Painting Reproduction
Thus far, we have evaluated all different components of our pro-
posed method separately: spectral acquisition and reconstruction,
reflectance to transmittance transformation, MILP ink selection and
linear absorbance model within it, and neural-network based spec-
tral separation. In this section, we evaluate these components jointly
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Fig. 9. Photographs of a painting and its printed reproduction under three
different physical illuminations. The selected inks by our MILP algorithm
are Epson Cyan (ID 41 in the ink library in supplementary materials), Epson
Magenta (ID 42), Waterproof Yellow (ID 16), and Gray Sublimation (ID 21)).
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Fig. 10. Simulated reproduction of 24 patches from the watercolor swatch.
The average RMSE for 423 patches is 3.40%. The average ∆E00 under D65,
TL85, A and D50 is 3.09, 3.22, 3.07 and 3.11, respectively.

through physical reproduction of a number of paintings. All our
paintings exhibit challenging features, such as diverse and saturated
colors, high spatial frequencies, and color gradients. Gradient im-
ages are challenging to reproduce because they are prone to banding
artifact, however in the supplementary materials we show that our
spectral separation does not suffer from such a problem. In Figure 9,

ACM Trans. Graph., Vol. 39, No. 6, Article 255. Publication date: December 2020.



255:12 • Ansari, Alizadeh-Mousavi, Seidel, Babaei

(a) Selected-inks reproduction ∆E00 error map (b) Yellow ink area coverage (c) CMYK reproduction ∆E00 error map

(d) Reproduction with selected inks (e) Original painting (f) Reproduction with CMYK

(g) Selected-inks reproduction spectral RMSE (h) Red ink area coverage (i) CMYK reproduction spectral RMSE

Fig. 11. Our mixed integer ink selection tested on a painting produced by our artist collaborator (e). The photograph of the reproduction using selected inks
(d) and the photograph of reproduction using a set of CMYK Canon inks (f) are shown. A separate spectral separation network has been calibrated per each
ink set. The colorimetric error map of reproduction with selected inks (a) and Canon CMYK (c) (over all pixels) have average values of ∆E00 = 3.41 and
∆E00 = 4.15 under D65, respectively. The spectral error maps of reproduction with selected inks (g) and Canon CMYK (i) (over all pixels) have average RMSE
values of 2.84% and 3.18%, respectively. The area-coverage maps of the two unusual selected inks, i.e., Waterproof Yellow (b) and Sublimation Red (h) are also
shown.

we show a watercolor painting (Flower) along with its printed repro-
duction captured under three physical illuminations with different
color temperatures7. We select 4 inks from our ink library using
our proposed approach and deploy a separation network calibrated
using these inks and their combinations. Subjectively, the repro-
duction quality, observed under a variety of illuminations, is high
such that discerning a difference between the painting and print
from a normal viewing distance is difficult. Also, with changing
the illumination, corresponding pairs of colors change consistently.
When capturing these photographs, we disabled the white balance

7High resolution photographs of all reproductions are included in supplementary
materials.

function of the camera in order to pronounce the effect of the illu-
mination and spot possible mismatches due to metamerism. Note
that, in this experiment, we are not concerned with how a human
observer would judge these colors under different illuminations.
This evaluation would require color appearance models [Fairchild
2013], which we consider out of scope of the current work.
For a quantitative evaluation of our reproduction, we use a cali-

brated separation network to simulate the reproduction of all 423
patches in our watercolor paint swatch. In Figure 10, we show a
subset of the swatch in form of both spectral plots and visualizations
under four different light sources. Note that the simulation is highly
reliable as it relies on a dense, data-driven neural network calibrated
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with four selected inks. The average spectral RMSE (3.40%) is higher
than the error encountered when evaluating the (inverse) network
(0.91%). This is because many patches in the highly diverse water-
color swatch lie outside the gamut of the four inks used for the
reproduction.

6.7.1 Comparison with CMYK Reproduction. An interesting analy-
sis of the ink selection is to compare it with the gold standard CMYK.
In Figure 11 we show the painting Sunset reproduced by 4 selected
inks using our MILP method. The selected inks consist of Epson
Cyan (ID 41) and Magenta (ID 42), Waterproof Yellow (ID 16) and
Sublimation Red (ID 20). We choose a set of standard Canon inks
as the CMYK reference set whose reflectance spectra are reported
in supplementary materials. We create two separation networks
calibrated using these two sets of inks. From Figure 11, we can see
an overall better reproduction when using the selected inks. This
is backed by both average spectral and colorimetric errors of the
two reproductions evaluated over all image pixels (see the caption
of Figure 11).

A closer look at the selected inks leads to some interesting insights.
In addition to cyan and magenta, the method selects two atypical
inks, i.e., Waterproof Yellow, a more brownish than usual yellow
ink, and Sublimation Red instead of a highly expected black. The
area coverage maps of these two inks in Figure 11 reveal that these
inks (especially the yellow) are behind the better reproduction of
the selected ink set at regions where the CMYK set struggles.
Although both the ink selection algorithm and the separation

networkwork on purely spectral basis, the colorimetric performance
of the selected inks is higher than the CMYK set. There are however
areas in the colorimetric error maps where the CMYK set performs
better than the selected inks, most notably the violet area in the
painting’s bottom right. But, as the spectral error maps in Figure 11
suggest, even in the regions with poorer colorimetric accuracy, the
selected inks outperform the CMYK in terms of spectral accuracy.
It is also noteworthy to mention that the ink selection (Equation 7)
optimizes for a set of inks that reproduce the spectra of an input
painting on average. That is, despite the guaranteed superiority in
overall performance, in some regions the selected inks might be
outperformed by another set even in a spectral sense.

6.7.2 Optimal Inks for Duotone Reproduction. When reproducing
our paintings using our library inks, we observe that the visible
differences diminish when selecting three and more inks. In contrast,
duotone reproduction [Power et al. 1996], i.e., color reproduction
with only two inks, typically leads to significant visual differences.
This behavior is summarized in Figure 12a where the ink selection
loss as a function of number of selected inks is plotted for a few
paintings. Additionally, in this figure, the result of ink selection loss
is shown for a spectral gray ramp. The gray ramp, visualized in
Figure 14a, is procedurally generated using a range of perfect grays
that have identical reflectance values at all wavelengths. Due to its
significantly lower color diversity, the gray ramp shows different
loss behavior in Figure 12a where even a two-ink reproduction
produces relatively small loss.
The effect of number of inks is also shown in Figure 13 where a

painting (Cat) has been reproduced using 2 to 4 selected inks. Thus,
duotone ink selection is an attractive showcase as, first, the effect of
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Fig. 12. The ink-selection loss for different painting coresets shwon in Fig-
ures 12b, 9, 13, and a spectral gray ramp’s coreset as a function of increasing
number of selected inks. Photographs of our paintings used for different
experiments: "Lady", "Couple", and "Sunrise"

(a) 2 inks (b) 3 inks (c) 4 inks (d) Painting

Fig. 13. Effect of the number of selected inks on the reproduction quality
for Cat. Photographs of reproduction with (a) 2 inks: Epson Yellow (ID 36),
Waterproof Blue (ID 24), (b) 3 inks: Epson Cyan (ID 41), Magenta (ID 42), and
waterproof Yellow (ID 16), (c) 4 inks: Epson Cyan (ID 41), Magenta (ID 42),
Waterproof Yellow (ID 16), and Gray Sublimation (ID 21). (d) Photograph of
the original painting.

ink selection is highly visible and, second, smallest mistake during
ink selection would stand out prominently.
In Figure 13a, we show the result of duotone ink selection for

Cat, the most challenging painting for our ink library according to
Figure 12a where our method selects Epson Yellow (ID 36) and Wa-
terproof Blue (ID 24). For a less challenging paintingMusic shown in
Figure 1 with a limited palette of 4 paints, our duotone ink selection
performs much better resulting in a near perfect reproduction. In
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comparison, the best two-ink combination of the CMYK Canon inks
(cyan and yellow) are significantly far from the original painting.

6.8 Evaluation of Adaptive Neural Separation
In this part, we compare the adaptive and universal approaches to
the network-based spectral reproduction when using an identical
set of inks. We simulate the reproduction of several spectral im-
ages, using both approaches, and show their reproduction accuracy
in Table 3. For simulations, we take the area-coverages computed
using different separation strategies and, instead of sending them
to printer, compute their corresponding spectra using the forward
network. As the network has been trained on printed data (in this
case Canon CMYK inks), the simulations are highly reliable.

First, we compute a universal inverse network trained with Canon
CMYK printed patches. In a second approach using an adaptive strat-
egy, we take advantage of the unsupervised nature of the inverse
network and train it using only the spectra found in the input im-
ages. Note that we still rely on the forward network trained on the
Canon CMYK dataset but build the inverse neural network on the
spectra of a given input image.
For training the adaptive network, inspired by transfer learning

methods, we take weights computed for the universal network as the
initial guess and further optimize them using the Adam optimizer.
We also experimented with a random initial guess and obtained
comparable results.
The spectral reproduction accuracy, listed in Table 3, shows a

considerable improvement when using the adaptive separation for
all images. The colorimetric accuracy is also higher when taking the
adaptive separation approach. In Figure 14 we show the simulated
spectral reproduction of the gray ramp (under D65 illumination)
using both adaptive and universal approaches. We observe that the
reproduction using the universal neural network leads to visible
imbalance in the grayness at several locations on the ramp. On the
other hand, the result of the adaptive network exhibits significant
improvement of the visual results.
A universal network trained to work well on a diverse set of

spectra, does not guarantee a high level of performance for images
at a tiny corner of the spectral space. The spectral gray ramp is
exactly such an example. A second advantage of adaptive separation,
beside performance, is the robustness. Neural network weights and
biases, computed using stochastic gradient descent, are known to
fall in different local minima [Ruder 2016]. Therefore, with identical
training data, we may compute different networks, with slightly
different losses, depending on the local minimum found by the
optimization. A slight difference in the overall loss on a diverse
training data, however, can cause significant changes for a single
image, especially if it has large, single-color regions. In contrast, in
adaptive separation, we learn to perform well on a more specific set
of spectra.

7 LIMITATIONS AND FUTURE WORK
Scattering Inks. We assume the employed inks don’t exhibit sig-

nificant volume scattering. This is a valid assumption as the world
of graphic printing is, to a great extent, scattering free. One notable
exception is the recent 3D printing inks with considerable volume

(a) Input spectral gray ramp

(b) Spectral reproduction using universal inverse network

(c) Spectral reproduction using adaptive inverse network

Fig. 14. Simulated spectral reproduction of a spectral gray ramp using
universal and adaptive inverse networks.

Universal separation Adaptive separation

RMSE% ∆E00 (D65) ∆E00 (A) RMSE% ∆E00 (D65) ∆E00 (A)
Couple 4.43 2.77 2.82 3.17 2.58 2.79
Cat 2.86 3.60 3.56 2.20 2.05 2.01
Flower 2.74 2.20 1.96 2.23 1.44 1.42
Lady 4.60 3.58 3.36 3.06 2.97 2.89
Sunrise 2.21 3.28 3.05 1.85 2.70 2.33
Sunset 3.18 4.15 3.48 2.60 2.42 2.65
Gray ramp 4.36 6.61 5.19 3.60 3.05 3.66

Table 3. Reproduction accuracy of universal and adaptive neural separation
approaches evaluated on all pixels of several images.

scattering [Sumin et al. 2019; Elek et al. 2017]. For these types of inks,
one can use the well-known Kubelka-Munk (KM) theory [Kubelka
and Munk 1931] as the ink mixing model in the optimization frame-
work. Thanks to the KM model’s linearity, the resulting problem
would still be a linear integer programming.

Ink Library. Our library is formed on an ad hoc basis where the
inks are added if the printer can jet them reliably. An expanded
ink library with diverse dyes/pigments, e.g., daylight fluorescent
pigments, would significantly enhance the ink selection capability.
The example of duotone reproduction mimics such a scenario as
our current library is fairly diverse relative to only two printing
channels.
The question of which inks to include in the library triggers an

opportunity for task-specific ink design where, instead of selecting
inks, we design inks with desired reflectance properties. Ink design
can also be combined with ink selection by allowing the bulk mix-
ing of inks in the library. This means that we need to design an
appearance model for bulk ink mixing (similar to Papas et al. [2013])
on top of a model for digital mixing mentioned in this paper.

Reflectance to Transmittance Conversion. An important limitation
of our method is the evaluation of the R2T network. Although we
could not spot inaccuracies due to this network, it has been evaluated
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on the printer inks while being used to predict paint transmittances.
As mentioned in Section 6.5, since applying a uniform film of paints
on transparency was not possible, we could not obtain ground truth
paint transmittance measurements to compare against R2T predic-
tions. While, in future, we can find a technique to produce these
samples, we believe a reflectance-transmittance separation based on
physical models is feasible and would be a more scalable solution.
Another interesting possibility is to use a physically-based path
tracer to render the training samples for our network.

Multi-objective Ink Selection. In the current work, spectral accu-
racy is the sole performance criterion for ink selection. It is highly
desirable to include further optimization criteria, such as colorimet-
ric accuracy and cost of inks [Hunt 2006]. As new objectives are
likely in conflict with each other, mixed-integer, multi-objective
programming schemes are required [Alves and Clímaco 2007]. Fur-
thermore, with the colorimetric term and its non-linearity, keeping
the problem tractable by new linearization schemes is an interesting
challenge.

Coreset Estimation. Our current problem setup relies on minimiz-
ing the spectral error on a coreset that is an overall representation
of the input image. Through alternative coreset estimation, we can
prioritize important regions in the image. This importance map,
analogous to region of interest in image processing, can come from
the painting semantics and statistics or even be user specified. We
believe that some approaches in computer graphics, such as soft
color segmentation [Aksoy et al. 2017], image-to-layer decompo-
sition [Tan et al. 2017] or pigment-based analysis of images [Tan
et al. 2018a; Aharoni-Mack et al. 2017] can inspire more methods in
this direction.

Network Scalability. Our forward network learns to connect ink
labels and their ratios in a halftone to the corresponding spectrum.
With a larger number of inks, the number of combinatorial training
examples increases significantly. This drawback motivates develop-
ing neural networks that can generalize to arbitrary inks by learning
the underlying color mixing from physical ink properties.

8 CONCLUSION
We presented an algorithm for selecting a desired number of inks
for optimal spectral reproduction. Our technique handles the huge
combinatorial search space and selects inks from within an ink
library of potentially thousand and more. In contrast to previous
approaches, our ink selection method is scalable and comes with
measurable optimality. We also use the selected inks in an end-
to-end workflow for accurate, spectral reproduction of watercolor
paintings.
We foresee a future where materials are selected and designed

to fulfill multiple objectives across multiple modalities, e.g., select-
ing a limited number of inks for both appearance and mechanical
purposes.
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