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Fig. 1. We address challenging problems in neural inverse design by taking advantage of the underlying mathematical properties of neural surrogate models
(NSMs). For example, in Figure 1a, given a piecewise linear NSM that predicts the spectrum of a color as a function of the input ink ratios, we can find the best
combination of ink ratios for reproducing a certain target spectrum. In Figure 1b, we find the optimal control parameters of a soft robot such that it reaches a
target location while avoiding an obstacle. Figure 1c depicts an integer-constrained inverse design problem where for a multi-shell nano-spherical scatterer we
find the optimal integer thicknesses of base materials (potentially from within a large material library) to obtain a desired scattering profile.

In computational design and fabrication, neural networks are becoming
important surrogates for bulky forward simulations. A long-standing, in-
tertwined question is that of inverse design: how to compute a design that
satisfies a desired target performance? Here, we show that the piecewise
linear property, very common in everyday neural networks, allows for an
inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal
solutions in a principled manner. Furthermore, our method significantly fa-
cilitates emerging, but challenging, combinatorial inverse design tasks, such
as material selection. For problems where finding the optimal solution is
intractable, we develop an efficient yet near-optimal hybrid approach. Even-
tually, our method is able to find solutions provably robust to possible fabri-
cation perturbations among multiple designs with similar performances. Our
code and data are available at https://gitlab.mpi-klsb.mpg.de/nansari/mixed-
integer-neural-inverse-design.
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1 INTRODUCTION
Data-driven prediction of a design’s performance is an indispensable
tool in computational design and fabrication. The amazing success
of deep neural networks in computer vision and natural language
processing is propelling the development of neural-network based
surrogate models, or neural surrogate models (NSMs), in computa-
tional design [Jiang et al. 2020]. NSMs either learn and replace com-
putationally expensive physics-based simulations [Kiarashinejad
et al. 2020] or are fitted to measured data when accurate simulations
are not available [Shi et al. 2018]. In addition to accelerating the com-
putational design pipeline, generality is an implicit but important
advantage of learned surrogate models: the same developed ma-
chinery can be applied to NSMs learned independently for different
applications.

Forward predictions are essential for troubleshooting and analy-
sis in computational design. But, oftentimes, their most important
application is in inverse design, i.e., the reverse process of mapping
functional goals, or performances, into fabricable designs. Although
there has been recent progress in inverting neural networks [Ren
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et al. 2020], there remain many unaddressed challenges. Due to
the non-convexity of NSMs [Bunel et al. 2018], none of the current
neural network inversion methods is capable of reasoning about the
optimality of the obtained solutions. Moreover, for many naturally
occurring combinatorial problems in computational design, such as
selecting an optimal subset of materials, we still have to resort to
stochastic algorithms.

Our main insight in this work is that given a piecewise linear neu-
ral surrogate model (PL-NSM), the inverse design problem can be
formulated as a mixed-integer linear program (MILP). The piecewise
linearity assumption is not particularly restrictive: most common
neural networks are a composition of linear transformations, such
as fully-connected or convolution layers, and piecewise linear acti-
vation functions, such as the rectified linear unit (ReLU). A MILP
formulation of NSM-based inverse design addresses the challenges
mentioned above. The MILP can be solved with measurable optimal-
ity as it produces the gap between the objective’s relaxed and feasible
solutions1. For small andmedium sized networks, our inverse design
objective typically reaches a gap of 0, i.e., finds the globally optimal
design. For larger networks, due to the combinatorial complexity of
solving MILPs, finding global optima becomes increasingly difficult.
Nevertheless, for these networks the solutions are still near optimal
as the relaxed solution can be computed via linear relaxation of
the corresponding MILP, i.e., a linear program. We also show that
the objective’s feasible solution can be computed using alternative
inverse methods thereby accelerating the gap closure via a hybrid
of gradient-based and MILP approaches. Furthermore, the MILP can
be straightforwardly augmented to solve challenging combinatorial
inverse design problems. This is a significant advantage, as a large
portion of inverse design problems are combinatorial by nature due
to different fabrication requirements. Finally, when the optimization
objective for many designs is similar, our method can be used to sort
those solutions based on their robustness to different perturbations.
The main contributions of this paper are:
• A novel method of inverse design via casting the inversion of
piecewise linear NSMs as mixed-integer linear programming.
• Introducing a hybrid approach capable of providing near
optimality certificate while inverting large neural networks.
• Proposing a framework to reliably analyze the robustness of
the inverse designs.
• Equipping the MILP inverse design with combinatorial con-
straints and applying it on a range of real-world problems.

We evaluate our proposed approaches through an extensive set
of experiments in spectral printing, soft robot inverse kinematics,
and photonic design.

2 BACKGROUND AND RELATED WORK
Functional Fabrication. One of the most important missions of

computational design and fabrication is to translate functional goals,

1Relaxed solutions are obtained by partially dropping the integer constraints of the
original problem. As a result, in case of a minimization (maximization) the relaxed
solution is an estimate guaranteed to be smaller (larger) than the optimal feasible
solution. The MILP solver tries in parallel to find better feasible solutions and to improve
the relaxed solution by progressively dropping fewer integer constraints. When finally
all constraints are considered, the relaxed and feasible solutions are equal, 𝑔𝑎𝑝 = 0,
indicating the optimal solution is found.

or performances, into fabricable designs [Bermano et al. 2017]. In the
computational fabrication literature, there aremany examples trying
to find a design for a prescribed performance. Example performances
include deformation [Schumacher et al. 2015], color [Sumin et al.
2019], gloss [Matusik et al. 2009], shadow [Mitra and Pauly 2009],
relief [Schüller et al. 2014], caustics [Schwartzburg et al. 2014], etc.
In order to solve these challenging inverse problems, often, the
fabrication process is first modeled in a forward fashion where
the performance is predicted from its corresponding design. Then,
to solve the original performance to design problem, the forward
process is inverted using an optimization. Inspired by the similarity
among these problems, Chen et al. [2013] propose a framework,
called spec2fab, that abstracts the functional fabrication process in
a general manner. In this work, we focus on functional fabrication
problems whose forward modeling can be expressed via a piecewise
linear neural network.

Neural Networks and Computational Design. Neural networks can
map designs to performances by approximating complex physics
simulations [Kiarashinejad et al. 2020]. Moreover, they can operate
as purely data-driven simulations when accurate physics-based
models are unavailable or difficult to develop [Shi et al. 2018]. In
addition to accelerating the computations, neural surrogate models
are highly transferable across different applications due to their
underlying similarities. Perhaps photonic design is the front-runner
field in using neural surrogate models for computational design
[Jiang et al. 2020]. Also, in computational fabrication we are seeing
a surge in the use of NSMs, such as in computational design of
cold-bent glass façades [Gavriil et al. 2020], appearance-preserving
tactile design [Tymms et al. 2020], or fine art reproduction [Shi et al.
2018]. A particularly relevant related work is the recent ink selection
method [Ansari et al. 2020]. In order to benefit from efficient MILP
solvers, for the ink selection problem, this work develops a linear,
but approximate, forwardmodel that predicts the spectra of different
ink combinations. (In general, developing such linear spaces requires
deep domain knowledge and specialized measurements.) In a second
stage, for spectral reproduction of a given painting, an accurate data-
driven forward model based on NSMs is deployed. Here we show
that both ink selection and spectral reproduction can be performed
using a single neural-network forward model without requiring
additional, specialized models.

Neural Network Inversion. Recently, there has been a surge in
inverse models for neural networks. The first solution coming to
mind is to train neural networks in the reverse direction using the
training data. This naive approach fails because of the one-to-many
nature of the problem: the same performance could lead to different
designs causing problems during optimization (e.g., via inconsis-
tent gradients). In order to bypass this challenge, tandem networks
[Liu et al. 2018; Shi et al. 2018] map performances into designs us-
ing a first neural network but, in order to compute a consistent
loss, use a pre-trained forward network to map the resulting de-
sign into its corresponding performance. Conditional variational
auto-encoders [Kingma and Welling 2013] have also been used for
the inverse design task [Kiarashinejad et al. 2020]. These networks
condition the design on the target performance and yield a distri-
bution of solutions from which multiple samples could be drawn.
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An invertible neural network [Ardizzone et al. 2019], based on real
NVP [Dinh et al. 2017], is another inversion method. In this method,
a specialized architecture based on normalizing flows is trained in
both forward and inverse directions leading to a bijective mapping
between design and performance spaces. Ren et al. [2020] bench-
marked these inverse methods and found out that a gradient-based
method, via backpropagation with respect to the design variables,
results in significantly more accurate solutions. Dubbed as neural
adjoint (NA), this method uses a boundary loss to punish infeasible
designs. It also runs the optimization starting from multiple random
initial guesses in search for the best objective value. Our method,
by nature, is similar to the NA as both are optimizations and not
inverse architectures as in [Liu et al. 2018; Shi et al. 2018; Ardizzone
et al. 2019]. In Section 4, we evaluate our method against the NA
extensively.

Mixed-Integer Programming and Neural Networks. Themathemati-
cal optimization problems in which all or some variables are integers
are known as mixed-integer programming2 (MIP) [Floudas 1995]. A
technique for solving MIPs with nonlinear, nonconvex functions,
dating back to Markowitz and Manne [1957], is to estimate those
functions with piecewise linear functions [Belotti et al. 2013]. The
resulting approximation, usually via auxiliary binary variables, is a
mixed-integer linear programming with more scalable and efficient
solvers. The connection between piecewise linearity of some class of
neural networks and MILP solvers has only recently been identified
[Cheng et al. 2017]. MILP formulation has since been exploited for
formal verification of networks against adversarial attacks [Fischetti
and Jo 2018]. It is important to note that unlike the classic use of
piecewise linear functions for approximating non-linear functions,
MILP representation is simply a reformulation of the already piece-
wise linear networks without any approximation. We borrow the
MILP formulation of piecewise-linear networks, initially appeared
in the formal verification literature [Fischetti and Jo 2018; Bunel
et al. 2018; Tjeng et al. 2019], and develop a novel neural inverse
design framework. To the best of our knowledge, we are the first
to introduce the MILP-based neural inverse design and extend it to
related tasks, such as combinatorial inverse design problems.

3 NEURAL INVERSE DESIGN VIA MIXED-INTEGER
LINEAR PROGRAMMING

In this section, we take a forward model expressed as a trained,
piecewise linear neural network and invert it using mixed-integer
linear programming. In addition to solving typical inverse design
problems, we show how extra integer constraints can readily be
added to our pipeline allowing for solving challenging combinatorial
inverse design problems. Additionally, this formulation can be easily
adapted for evaluating the robustness of different designs. Finally,
our proposedmethod can be combinedwith other inversionmethods
in order to find more accurate near-optimal designs efficiently.

3.1 Mixed-Integer Formulation
A feedforward neural network 𝐹\ is built by a number of function
compositions [Montufar et al. 2014]
2We recommend the following short and gentle introduction to MIP and its solvers to
the less familiar reader: https://www.gurobi.com/resource/mip-basics/

x𝐿 = 𝐹\ (x0) = 𝑓 𝐿 ◦ 𝑔𝐿−1 ◦ 𝑓 𝐿−1 ◦ . . . ◦ 𝑔1 ◦ 𝑓 1 (x0) (1)

and maps the input x0 ∈ R𝑚 to the output x𝐿 ∈ R𝑛 (note that
the last layer does not undergo an activation). Here, 𝑓 𝑙 is a linear
pre-activation function

𝑓 𝑙 (x𝑙−1) = W𝑙x𝑙−1 + b𝑙

∀ 𝑙 ∈ {1, 2, · · · , 𝐿}
(2)

whose weightsW𝑙 and biases b𝑙 at all layers (1 to 𝐿) make up the
network’s parameters \ which are computed during the training. In
our notation superscripts and subscripts (to appear later) indicate
the layers and nodes, respectively. The function 𝑔𝑙 is a nonlinear
activation function. Throughout all inverse problems in this workwe
assume thewidely used rectified linear unit or ReLU as the activation
function. Using other piecewise linear activation functions, such
as leaky ReLU or max pooling layers is also straightforward. The
ReLU function is defined as

x𝑙 = 𝑔𝑙 (𝑓 𝑙 (x𝑙−1)) = max{0,W𝑙x𝑙−1 + b𝑙 }. (3)

We adopt a vector-matrix notation for compactness and readability.
That is, the max operator in Equation 3 takes a vector input and
outputs the component-by-component maxima.

In a general neural inverse problem we search for an input vector
x0 that minimizes a distance, using L1 norm3, between the network
prediction and a target performance t

argmin
x0

𝐹\ (x0) − t1 . (4)

This optimization is very challenging as 𝐹\ is a highly non-linear,
non-convex function [Bunel et al. 2018]. Nevertheless, we can exploit
the piecewise linear structure of neural networks and model their
optimization using mixed-integer linear programming. That is, the
optimization only involves linear terms and constraints. In doing so,
we eliminate the network’s non-linearities at the cost of introducing
new binary and continuous variables.

We adapt the MILP-based reformulation of ReLU networks [Tjeng
et al. 2019] (previously used for formal verification) for solving
our central inversion problem, summarized in Equation 4. Given a
pretrained network 𝐹\ with a given set of weights W𝑙 and biases
b𝑙 , we encode the inverse problem shown in Equation 4 as a MILP
with linear and binary constraints4

argmin
z1, · · · ,z𝐿−1, x0, · · · ,x𝐿

x𝐿 − t
1

(5a)

x𝑙 ⪯ W𝑙x𝑙−1 + b𝑙 − l𝑙 (1 − z𝑙 ) (5b)
x𝑙 ⪰ W𝑙x𝑙−1 + b𝑙 (5c)

x𝑙 ⪯ u𝑙 ⊙ z𝑙 (5d)
x𝑙 ⪰ 0 (5e)

z𝑙 ∈ {0, 1}𝐾
𝑙

. (5f)

3The L1 norm is more amenable to linearization.
4Note the curled inequalities and ⊙ symbol indicate our continuing use of component-
by-component convention.
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For the nodes at layer 𝑙 we introduce a set of continuous (x𝑙 ) and
binary (z𝑙 ) variables. Vectors l𝑙 and u𝑙 are the lower and upper
bounds to the nodes’ pre-activation values W𝑙x𝑙−1 + b𝑙 and are
precomputed (see Section 3.3).

While optimizing Equation 5, the solver branches on these binary
variables and, in the worst case, checks all possible network config-
urations. It is simple to verify that the constraints replace the role
of max{0, .} operation. When z𝑙

𝑘
= 1 (corresponding to neuron 𝑘 in

layer 𝑙 ) the constraints 5b and 5c are binding and thus:{
x𝑙
𝑘
≤ W𝑙

(𝑘,:)x
𝑙−1 + b𝑙

𝑘

x𝑙
𝑘
≥ W𝑙

(𝑘,:)x
𝑙−1 + b𝑙

𝑘

=⇒ x𝑙
𝑘
= W𝑙

(𝑘,:)x
𝑙−1 + b𝑙

𝑘

whereW𝑙
(𝑘,:) is k’th row of matrixW and represents all the weights

which are connecting layer x𝑙−1 to x𝑙
𝑘
. Otherwise, when z𝑙

𝑘
= 0, the

constraints in equations 5d and 5e are binding and thus:{
x𝑙
𝑘
≤ 0

x𝑙
𝑘
≥ 0

=⇒ x𝑙
𝑘
= 0

Note that while we are mostly interested in the optimized value
of x0, we should optimize all introduced binary and continuous
variables to enforce the constraints in Equation 5 and thus have a
correct representation of the neural network.

3.2 Combinatorial Inverse Design
The MILP representation of the inverse design problem can take
additional integer constraints in a seamless manner. These integer
constraints appear in many computational design problems. For
example, in a selection problem,we are interested in a limited number
𝐷 of all input design features x0, which results in an optimal target
performance t. We can cast the selection problem as Equations 5a
to 5f in addition to

𝐾0∑︁
𝑖=1

q𝑖 ≤ 𝐷 (6a)

q ∈ {0, 1}𝐾
0

(6b)
0 ≤ x0𝑖 ≤ q𝑖 , ∀ 𝑖 ∈

{
1, 2, · · · , 𝐾0} (6c)

where the vector of inputs to the neural network x0 is of size 𝐾0

and normalized between 0 and 1, and q is our introduced selection
variable, a binary vector of same size (different from previously
defined binary variables z𝑙 ). The inequality constraints 6a and 6c
ensure that at most 𝐷 entries of x0 take non-zero values and thus
used for estimating t. Indices of these entries match the indices of
non-zero elements in q and point to the selected elements. Other
combinatorial inverse design problems can be formulated similarly
by adding proper constraints and integer variables. In Sections 4.3
and 4.4 we show how this formulation is applied to real-world
inverse problems.

3.3 Bound Precomputation
We precompute as tight as possible lower l𝑙 and upper u𝑙 bounds
to the pre-activation values W𝑙x𝑙−1 + b𝑙 . There are two main, in-
terrelated advantages in bound tightening. First, it improves the

solve time of the problem by strengthening its formulation [Vielma
2015]. Second, tighter bounds can lead to more stable ReLUs. Sta-
ble ReLUs are those that operate on nodes whose bounds lie com-
pletely within either positive or negative domain (see the inset).

l u

Stable 
active

l u

Stable 
inactive

l u

Unstable 

When the bounds lie within the positive
domain (stably active), the value of such
a node is always a linear combination of
preceding nodes and there is no need to
introduce new optimization variables for
it. When the bounds lie within the nega-
tive domain (stably inactive), the value of
such a node is always zero and therefore
the corresponding variables are dropped.
Otherwise, we have unstable ReLUs for
which we must define binary and contin-
uous variables.
The procedure for bound precompu-

tation is similar to our original inverse
problem where we calculate the minimum (maximum) of each node
of the neural network using the same mixed-integer formulation
(Equation 5). Except that instead of minimizing (maximizing) the
distance to the target t, we minimize (maximize) the value of each
individual node 𝑘 in layer 𝑙 :

argmin
z1, · · · ,z𝑙−1,z𝑙

𝑘
, x0, · · · ,x𝑙−1,x𝑙

𝑘

x𝑙
𝑘

(7)

( argmax
z1, · · · ,z𝑙−1,z𝑙

𝑘
, x0, · · · ,x𝑙−1,x𝑙

𝑘

x𝑙
𝑘
) . (8)

This optimization is still subjected to constraints 5b to 5f for the
considered node and all preceding layers.

Optimal
solution

Approximated
solution

Feasible 
solution

Relaxed
solution

Time

Objective

tmax

Optimal
 solution

Feasible
 solution

Relaxed
solution

Time

Objective

tmaxtopt.

Our bound tightening algo-
rithm is based on [Fischetti and
Jo 2018] but extended to include
the design constraints. Since de-
signs (x0 in our notation) usually
come with their own constraints,
we observe that it is highly bene-
ficial to enforce those constraints
when precomputing the nodes’
bounds as they lead to tighter
bounds. The bound precomputa-
tion can be very expensive for
larger networks as it should be
performed on each node sepa-
rately. The computation is espe-
cially heavy within last layers of
the network. In practice, we set a time limit (𝑡max) for the solver
during this computation. If we stop the optimization prematurely,
the relaxed solution of the optimization is the node’s bound. As
depicted in the inset figures, relaxed solutions are conservative es-
timation of the optimal solutions and guarantee that in case of a
minimization (maximization) there are no smaller (larger) solutions
than this estimation. The feasible solution, however, is the solution
that is found for the original MILP problem thus far and there could
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be smaller (larger) values if the minimization (maximization) con-
tinues. It is important to note that using feasible solution as upper
and lower bounds in an early-stopped optimization, results in over-
estimating the lower bound and underestimating the upper bound
values. This will lead to calculating incorrectly tighter bounds and
overestimating the number of stable ReLUs, which results in sub-
optimal solutions. Algorithm 1 in Appendix A presents the extended
bound precomputation step by step.

3.4 Combination of Gradient-Based Optimizations and
MILP

For non-combinatorial inverse design problems, gradient-based opti-
mizations are an attractive choice given that the network’s gradient
information can be efficiently computed via automatic differentia-
tion. The neural adjoint (NA) method [Ren et al. 2020], for example,
relies on a gradient descent approach based on the backpropagation
algorithm [Hecht-Nielsen 1992] for inverting neural networks. The
process is very similar to network training except instead of net-
work’s parameters its input is optimized. Despite its good scalability
with network’s size, this (and any other) neural inverse method is
unable to reason about the optimality of the obtained solutions.
Using our method, once the neural inverse design is formulated

via MILP, we immediately obtain a relaxed solution to the objective.
Typical MILP solvers search recursively for both feasible and relaxed
solutions of the objective and try to close their gap as quickly as
possible [Klotz and Newman 2013]. Therefore, any feasible solution
is a near optimal solution because we know how far it is from the
(conservative) relaxed solution at any moment. Given the obtained
solutions via NA are all feasible to the MILP objective, we can solve
for the relaxed solution of the objective via MILP and its feasible
solution via NA. In practice we run NA and the MILP on the same
network simultaneously and track the optimality gap. We can then
stop the process by monitoring the gap. Note that, for larger neural
networks (in our experience approximately larger than 4 layers
each 150 neuron wide) it is not tractable to insist on a zero gap.
As we show in Section 4.5, NA solutions (in case of minimization)
reduce the objective’s feasible solutions significantly more quickly
resulting in a tighter objective’s bound in a less amount of time.

3.5 Design Robustness
Inverse designs are typically one-to-many problems where for a
given performance there are multiple acceptable designs. It is there-
fore interesting to study other attributes during inverse design. An
important attribute is the robustness of designs to possible perturba-
tions during fabrication [Sigmund 2009]. We define the robustness
of a computed, candidate design x̂0 as the maximum deviation of
its performance from a desired target performance t when the can-
didate design is perturbed by a small positive number 𝜖 at each
dimension. In other words, we look for the worst performance of
a design when it is allowed to roam inside a hypercube around it.
The mixed integer formulation allows us to find the provably worst
performance. We write this problem as

argmax
z1, · · · ,z𝐿−1, x0, · · · ,x𝐿

x𝐿 − t
1

x̂0𝑖 − 𝜖 ⩽ x0𝑖 ⩽ x̂0𝑖 + 𝜖, ∀ 𝑖 ∈
{
1, 2, · · · , 𝐾0} . (9)

Once again this optimization is subjected to constraints 5b to 5f.
Note that the candidate design x̂0 need not necessarily come from
MILP-based inversion. In our case, in Section 4.6, we use the neural
adjoint (NA) method for computing candidate designs. In general,
robustness computation is more efficient than typical MILP-based
inversion as the design is usually perturbed within a small neigh-
borhood. This, on top of bound precomputation, leads to further
reduction of unstable ReLUs. As a result, when dealing with ro-
bustness computation, the scalability becomes problematic only for
significantly larger networks.

4 EVALUATION
In this section, we demonstrate the potential of our proposedmethod.
For our analyses and experiments, we focus on several real-life appli-
cations in three different areas of computational design and control:
neural spectral printing [Shi et al. 2018; Ansari et al. 2020], inverse
kinematic of soft robots [Xue et al. 2020; Sun et al. 2021], and pho-
tonic design [Peurifoy et al. 2018; Nadell et al. 2019]. We solve all
MILPs using Gurobi, a state-of-the-art solver [Gurobi Optimization
2018]. In order to better relate the experiments to the theory (de-
veloped in Section 3), in Table 1, we summarize the setup of each
experiment in connection with Equations 5 and 6. All bound pre-
computation and MILPs, unless otherwise mentioned, are solved on
a CPU cluster with 256 cores. This does not mean that employing
all cores is always desirable when solving a MILP. In practice, we
find that using more than 30 cores does not help with the speed up.
On the other hand, the nodes’ bound precomputation is trivially
parallelizable for the nodes belonging to the same layer. The time
limit 𝑡max for bound precomputation is set to 150 seconds. We col-
lect the timing of different computations, and the configuration of
each NSM in Table 2. In all experiments, the reported error is the
objective value of our optimization (based on the L1 norm) for a
set of unseen, target performances.

4.1 Neural Spectral Separation
We begin by studying a neural inverse problem in spectral printing.
Spectral printing ensures that printed items are visually close to
the originals, independent of the color of the light source under
which they are observed. In this experiment we used two different
neural networks as the input to our method. The 4-ink network is a
trained PL-NSM with 4 hidden layers each having 100 neurons and
ReLU activation functions [Ansari et al. 2020]. The 44-ink network
is a trained PL-NSM with 2 hidden layers each having 50 neurons
and ReLU activation functions. The 4-ink network, a surrogate for
a forward spectral prediction model, has a 4D design space made of
CMYK (cyan, magenta, yellow and black) ink ratios and outputs a
31D spectrum. Here the inverse design problem, known as spectral
separation, concerns finding the ink ratios for a target spectrum. A
particularly challenging target for spectral separation is the perfect
gray ramp introduced by Ansari et al. [2020]. This gradient is formed
by 901 dark to light ideal gray spectra which have equal reflectivity
across all visible wavelengths (Figure 2).

We compare our MILP-based inversion with both the method of
tandem, previously used for the exactly same problem [Shi et al.
2018; Ansari et al. 2020], and the neural adjoint (NA) [Ren et al.
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Table 1. The setup of each experiment in connection with Equations 5 and 6.

Variables of Equations 5 and/or 6

Experiment name Experiment mode t (Target) x0 (Input) x𝐿 (Output) Design constraints Variable of interest
Neural Spectral 4-ink network Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0

Separation spectrum (t ∈ R31) (x0 ∈ R4) (x𝐿 ∈ R31)
44-ink network Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0

spectrum (t ∈ R31) (x0 ∈ R44) (x𝐿 ∈ R31)
Soft Robot - Target location Stretch and Location of all Equations x0

Inverse Kinematics (t ∈ R2) contraction (x0 ∈ R40) vertices (x𝐿 ∈ R206) 11, 12, and 13

Material Selection Selection Matrix of 6 Matrix of 6 area Matrix of 6 Equation 6, 𝐷 = 2, q
spectra (t ∈ R6×31) coverage (x0 ∈ R6×44) spectra (x𝐿 ∈ R6×31) q ∈ {0, 1}44

Inversion Painting’s color Ink ratios Color spectrum 0 ≤ x0 ≤ q x0

spectrum (t ∈ R31) (x0 ∈ R44) (x𝐿 ∈ R31)
Nano-Photonics Inversion (rounded) Scattering cross Spherical shell Scattering cross 0 ≤ 10x0 ≤ 70 𝑅𝑜𝑢𝑛𝑑 (x0)

section (t ∈ R200) thickness (x0 ∈ R4) section (x𝐿 ∈ R200)
Integer-constrained Scattering cross Spherical shell Scattering cross 0 ≤ 10x0 ≤ 70 x0

inversion section (t ∈ R200) thickness (x0 ∈ Z4) section (x𝐿 ∈ R200)
Contoning Inversion (rounded) Color spectrum Ink layer thickness Color spectrum 0 ≤ x0 ≤ 30, 𝑅𝑜𝑢𝑛𝑑 (x0)

(t ∈ R31) (x0 ∈ R11) (x𝐿 ∈ R31) ∑11
1 𝑥0

𝑖
= 30

Integer-constrained Color spectrum Ink layer thickness Color spectrum 0 ≤ x0 ≤ 30, x0

inversion (t ∈ R31) (x0 ∈ Z11) (x𝐿 ∈ R31) ∑11
1 𝑥0

𝑖
= 30

MILP-NA - Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0,
combination spectrum (t ∈ R31) (x0 ∈ R8) (x𝐿 ∈ R31) Optimality gap

Robustness Analysis - Metasurface 4×cylinder height Metasurface spectrum 0 ≤ x0 ≤ 1, argmax
x𝐿 − t1

spectrum (t ∈ R300) and radius (x0 ∈ R8) (x𝐿 ∈ R300) x̂0
𝑖
− 10−3 ⩽ x0

𝑖
⩽ x̂0

𝑖
+ 10−3

MILP, E= 629.7 MILP, E= 361.1

NA (random), E= 2140.2

NA (informed), E= 395.6

Tandem, E= 766.6

NA, E= 630.5

Tandem, E= 732.1

4-Ink network

Ground truth

44-Ink network

Fig. 2. Different neural inverse methods for spectral separation of a perfect
gray ramp. The error (E) is the sum of objective for all 901 gray spectra. We
split the NA’s solution in the middle to show both random, and domain-
knowledge informed initializations.

2020] as it has been shown to significantly outperform other neural
inverse methods in literature. Figure 2 visualizes the accuracy of

different inverse methods for spectral separation. Our method per-
forms 901 separate optimizations (i.e., Equation 5) in order to find
the corresponding ink ratios. For NA, we run the 901 optimizations,
each 50 times with different random initialization. We allow up to
2000 iterations of Adam [Kingma and Ba 2014] and terminate the
optimization if the solution does not improve within a threshold
in 10 consecutive iterations. In the tandem method we query the
learned inverse method once using a batch of 901 gray spectra as
input.
Looking at the spectral separation accuracies in Figure 2, using

the 4-ink PL-NSM, both our method and NA perform very well
surpassing the tandem method significantly. In fact, with a gap of
0 between the feasible and relaxed solution of the objective, our
method finds the global optima for all 901 instances. This indicates
that the method of NA has also performed remarkably well as its
error is only slightly worse than our method. For a better compari-
son, we re-run an identical set of experiments using a new PL-NSM
with 44 inks as input, i.e., a 44D design space. For this network, our
method again finds the global optima for all spectral targets. This
time, however, NA struggles to find acceptable solutions for many
targets and produces an erroneous reproduction. This indicates that
NA’s performance drops for higher dimensional design spaces likely
due to random initialization.
In a second experiment on NA, instead of random initialization,

we initialize the optimization with an informed guess. That is, in
a crude estimation, we assume that the average spectra of all in-
put inks, i.e., when each ink’s contribution is 1/44, is a 50% gray
spectrum. Therefore, for reproducing the pure black, i.e., the dark-
est gray (100%), each ink is initialized with 2/44 ratio, and so on.
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With this informed initialization drawn from domain knowledge,
the accuracy of NA increases substantially but still trails MILP’s
performance. This experiment reveals a significant advantage of
our method where unlike NA, due to global optimality, increasing
the design space dimensionality does not affect the accuracy. Being
insensitive to the initialization is another major advantage as us-
ing domain knowledge for informed initial guesses is not always
feasible.

Using the MILP approach, the optimization of a single gray spec-
trum takes on average around 256 and 840 seconds for the 4- and
44-ink PL-NSM, respectively. We spend also around 331 and 3.5
seconds on a one-time precomputation of upper and lower bounds
of the network nodes. The NA method, on a Titan X GPU, takes on
average 62 and 99 seconds for the 4- and 44-ink PL-NSM, respec-
tively. The fastest method is tandem, spending less than 1 second
for all spectra, as querying neural network is extremely efficient,
though at the cost of significant accuracy loss.

4.2 Soft Robot Inverse Kinematics
Soft robotics is dedicated to studying robots made with flexible
materials, with applications in minimally invasive surgeries [Ma-
jidi 2014], prosthetics [Polygerinos et al. 2015] and many more. To
control the movement of soft robots accurately, an efficient inverse
kinematics approach is required. In this section, using our MILP
approach, we solve the neural inverse kinematics problem for soft
robots, introduced by Sun et al. [2021]. The problem involves con-
trolling the soft robot such that it reaches a certain target location.
Following [Sun et al. 2021], we consider a snake-like robot made of
103 vertices connected with flexible edges and a fixed bottom (Fig-
ure 1b). Among these edges, 40 side edges (colored in Figure 1b) are
controllable whose stretches and contractions form our design space
(40D). This problem is typically formulated as a PDE-constrained
optimization where the design parameters are the boundary condi-
tions, and the solution of the optimization is the position of all the
vertices (final shape) [Xue et al. 2020]. As PDE-constrained optimiza-
tions are computationally costly, resorting to NSMs is an attractive
alternative.
We train a PL-NSM with two hidden layers, each having 128

neurons and ReLU activation functions. To create the training data
we solve a PDE-constrained optimization for 50,000 randomly gen-
erated stretches and contractions of controllable edges [Xue et al.
2020]. The model’s input is the stretches and contractions of 40 con-
trollable edges of the soft robot. The output is the (𝑥,𝑦) coordinates
of all 103 vertices, hence, our performance space has 206 dimensions.
For the inversion, we would like to optimize the input such that the
center of the soft robot’s tip reaches the target location t, i.e.,

argmin
z1, · · · ,z𝐿−1, x0, · · · ,x𝐿

x𝐿𝑖 − t1 ,
𝑖 ∈ [123, 124] ,

(10)

where, in our setup, indices 123 and 124 represent the (𝑥,𝑦) location
of the robot’s tip. Note that Equation 10 is the neural inverse problem
objective function (Equation 5a) with a slight modification and is
still under the constraints 5b to 5f.

To enforce valid designs, we limit the contractions and stretches
(Z ) in the input,

Zmin ⪯ x0 ⪯ Zmax . (11)
Theminimum (Zmin) andmaximum (Zmax) contractions and stretches
are among soft robot properties. Following Sun et al. [2021] we set
Zmin and Zmax to −0.2 and 0.2, respectively. Moreover, to avoid non-
physical changes, we use a similar term to the one proposed by Sun
et al. [2021] which controls the smoothness of the contractions and
stretches in consecutive edges:��(x0𝑖+1 − x0𝑖 ) − (x0𝑖 − x0𝑖−1)�� ≤ 𝑙𝑑 ,

𝑖 ∈ (1, 𝑛), 𝑖 ≠ 𝑛

2
, 𝑖 ≠

𝑛

2
+ 1.

(12)

Here 𝑙𝑑 is the limit for the deformation and should be determined
based on the mechanical properties of the soft robot (flexibility,
stress tolerance, etc.). In this experiment, we assume a material that
can tolerate a predefined amount of deformation 𝑙𝑑 = 0.2. Indices
𝑖 ∈ [1, 𝑛/2] and 𝑖 ∈ [𝑛/2 + 1, 𝑛] correspond to the edges on the
robot’s left-hand side and right-hand side, respectively. Moreover,
𝑖 = 𝑛/2 and 𝑖 = 𝑛/2 + 1 are the end-nodes from two different sides
and excluded from Equation 12 as we apply the smoothness terms
on each side separately.
Finally, to have a more challenging setup, we seek robot paths

that avoid a circular obstacle with radius 𝑟 . Unlike Sun et al. [2021],
we use an L1 norm for avoiding the obstacle. Using L1 norm, the
vertices avoid the auxiliary, square obstacle and thus the chance of
intersection between the edges and the primary, circular obstacle
will be reduced significantly. To avoid the obstacle, we define the
following constraint

√
2𝑟 ≤

x𝐿𝑖 − o1 (13)

where o is the location of the center of the obstacle, 𝑟 is the obstacle
radius, and

√
2𝑟 is half the diagonal of the square encompassing the

obstacle. In this experiment we set 𝑟 = 0.9. Note that only a subset
of vertices are exposed to the obstacle (highlighted via blue dots in
Figure 3), and if they do not collide with the obstacle, the rest of the
vertices remain intact. In Equation 13, index 𝑖 represents the set of
such exposed vertices.

We solve this inverse problem using our MILP approach for 1000
randomly sampled target locations. We spend 307 seconds on a
one-time network’s bound pre-computation. In average, the solve
time for each sample is 9.2 seconds. All solutions avoid the obstacle
and reach L1 error of 0. Figure 3 shows 4 randomly chosen solution
samples of the MILP optimization. In the first three instances, it
seems that the soft robot collides with the L1 square but a closer
look reveals that the vertices, as expected (and guaranteed), are
intact. Note that, following the previous work, here we define the
constraints based only on vertices, but designing linear constraints
for edges to avoid the obstacle is also conceivable. As mentioned
earlier, using the L1 error reduces the chance of the intersection
between the edges and the circular obstacle.

We also solve the neural inverse kinematics problem using the NA
method. We use the optimization objectives introduced in [Sun et al.
2021] with slight changes such that the losses are comparable with
the MILP method ( Appendix B). We observe that in the NA-based in-
version, all samples avoid the obstacle too, but the average L1 error
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Table 2. Network configuration and calculation time for the experiments of section 4.

Experiment’s name Experiment’s mode Hidden layers configuration MILP computation time (s) Bound precomputation time (s) Other methods (s)
Neural Spectral 4-ink network 100, 100, 100, 100 256 331 NA=62, Tandem<1
Separation 44-ink network 50, 50 840 3.5 NA=99, Tandem<1

Soft Robot Inverse Kinematics - 128, 128 9.2 307 NA=84.5

Material Selection Selection 50, 50 5 × 103 3.5 -
Inversion 50, 50 1.8 3.5 -

Nano-Photonics - 100, 50, 100 44 4.8 -

Contoning - 50, 50, 50 40 8 -

Robustness Analysis - 500, 500, 500, 500 64 1.31 × 104 -

 Softrobot L1 squareTargetExposed vertices Obstacle

Fig. 3. Soft robot inverse kinematics with MILP. Using the L1 norm square prevents the collision between robot’s vertices and the square while significantly
reducing the chance of the collision between the edges and the (primary) circular obstacle. The highlighted vertices in orange-yellow are those considered in
the no-collision term.

is 0.0308 with the average calculation time of 84.5 seconds. Unlike
our method, in NA different constraints such as obstacle avoidance
and physical deformations are incorporated as soft constraints in the
energy term with weight hyperparameters to be tuned. This reveals
other important advantages of the MILP formulation. First, different
constraints can be added to the MILP simply and are guaranteed to
be satisfied. Second, no hyperparameter tuning is required. The lat-
ter is especially beneficial in real-world problems where there might
be many constraints that need to be incorporated in the objective
function. By introducing more constraints, it becomes significantly
harder to tune the corresponding weights.

4.3 Material Selection
Although digital fabrication technologies, such as multi-material
3D printers, have a limited number of channels, there is a vast array
of materials that can fill those channels. Consequently, the question
of which subset of materials is optimal for a given task (also known
as material selection) is becoming a recurrent question [Ansari et al.
2020; Piovarči et al. 2020; Nindel et al. 2021].

Here we reproduce the results of the duotone reproduction exper-
iment from Ansari et al. [2020] via our approach. The effect of the
ink selection is highly visible in duotone experiment and the small-
est mistake will stand out prominently. Similar to us, Ansari et al.
[2020] employ a MILP formulation for the ink selection. However,
they need to develop a custom linear forward model that requires
deep domain knowledge and specialized measurements. Interest-
ingly, for the actual spectral separation, they train NSMs for the
selected inks. Here we show that both spectral separation and the
ink selection can be performed via purely data-driven NSMs.

In our duotone reproduction setup, following Ansari et al. [2020],
given a spectral image we look for the best pair of inks leading
to optimal spectral reproduction from within an ink library of 44
inks. The input is the spectral image of a limited palette watercolor
painting from Ansari et al. [2020] shown in Figure 4a. We adopt the
PL-NSM (Section 4.1) that predicts the spectrum of a set of 44 library
inks. As printed data for training a 44-ink network is not provided,
we simulate such data using the Neugebauer model [Yule 1967], an
analytical spectral prediction model. The Neugebauer primaries are
computed using the multiplication of library ink transmittances.
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(a) Original painting (b) Reproduction

Fig. 4. Given a PL-NSM that predicts the spectrum of a set of 44 inks,
our method finds the optimal pair of inks that results in the best spectral
reproduction of the input image.

Since we are looking for a pair of inks that performs well on the
whole image, following Ansari et al. [2020], we sample 6 spectra
from the input image. We use the method explained in Section 3.2,
relying on both Equations 5 and 6. As we use 6 sampled spectra
from the input image, we optimize for the 6 targets t simultaneously
via using a sum in Equation 5a. In fact one can see this problem as
solving 6 copies of the network simultaneously for 6 different target
spectra all of which must satisfy Equation 6. This means that the
variables are almost 6x more than solving for a single target (see
Table 1).

Our MILP-based ink selection finds the ground truth inks with
a gap of 0, i.e., provably the optimal pair of inks for reproduction
of the given input (Figure 4a). Having obtained the two optimal
inks, in order to reproduce the input image, we could calibrate a
new NSM using the reliable, printed data of those two inks. More
interesting is to use the same 44-ink network, this time in a spectral
separation configuration, in order to simulate how the pair of opti-
mal inks reproduce the painting (Figure 4b). As we see in Figure 4,
the reproduction is of high quality. The quality can be still improved
if we calibrate the network with printed rather than simulated data.
But the remarkable fact of this experiment remains the globally
optimal ink selection on a neural network. The time for solving the
ink selection problem is 4998s. The time for the spectral separation
is, on average, 1.8 seconds for each spectra, and manageable as
there are only 5483 unique colors in the scene. Finally, the one-time
precomputation of nodes’ bounds took 3.5 seconds.

4.3.1 Comparison with Genetic Algorithm. When selecting 2 out of
44 inks, it might be tempting to try a brute-force approach where
the objective for each possible pair of inks is computed and then
the pair with the best objective is selected. There are however two
major caveats. First, although the number of two-ink combinations
in a set of 44 inks is reasonable, selecting a larger number of inks via
a brute force approach is infeasible. For example, selecting 10 inks
amounts to around 2 × 109 combinations, which means we need
to perform this number of optimizations to find the objective for
each combination. Second, in the absence of a MILP approach, the
objective values may not be optimal.
More appropriate solutions to such combinatorial problems are

based on stochastic methods, such as genetic algorithm (GA) or sim-
ulated annealing. In this section we compare our proposed method
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Fig. 5. Comparing ourMILP and a GA approach for an ink selection problem.
We repeat GA 10 times and report the average, maximum and minimum
values.

to GA for a selection problem. Genetic algorithm searches the com-
binatorial space stochastically via their well-known heuristics and,
in general, prefer combinations with best objectives. For computing
the GA’s objective, we use the interior point method. In Figure 5
we perform ink selection for a single target spectrum each time
allowing for a different number of inks. At each step we repeat the
experiment 10 times to capture the variance in GA solutions, and
show the average, maximum and minimum values. As shown in
Figure 5, the MILP approach always yields the optimal solutions,
outperforming GA in both time and accuracy. Note that MILP is
considerably faster even though minimum GA computation time on
the plot seems to be smaller at around 8 inks. This is because MILP
computation time should be compared to the GA’s multiple run
times until GA converges to a desired solution (due to stochasticity).
In this experiment these two methods were evaluated on the same
hardware (Intel Xeon CPU E5).

4.4 Integer-Constrained Inverse Design
Apart from material selection, a significant portion of inverse de-
sign problems are combinatorial by nature due to the fabrication
constraints. For example, metamaterials are usually made of juxta-
position of a set of materials (including the void) in 2D or 3D arrays
[Bertoldi et al. 2017]. Current approaches assign continuous mate-
rial properties (such as permittivity) to the elements of these arrays
and quantize these values before fabrication. Unfortunately, the
quantization step can significantly undo the optimized performance
[Zhu et al. 2020]. When the forward model is expressed via a PL-
NSM, our combinatorial inverse design formulation can seamlessly
take such integer constraints into account. Here, we demonstrate
two examples of integer-constrained inverse designs.

4.4.1 Nano-Photonics. In this experiment (Figure 1c), we consider
the light scattering from a multilayer dielectric spherical nano-
particle [Peurifoy et al. 2018]. We obtain a different spectral scat-
tering cross section by changing the thickness of the material of
each shell. Similar to spectral printing, here we also look for optimal
ratios (thicknesses) of the materials which result in a desired spec-
trum. In order to imitate possible fabrication constraints, we slightly
twist the experiment by limiting the materials to take a predefined
set of integer thicknesses (from 0 to 70 nm at 10 nm intervals). We
train a PL-NSM with 3 layers of 100, 50, and 100 neurons following
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Fig. 6. (a) Optimizing for integer shell thickness of a photonic nano-sphere,
and (b) integer 3D printed layer thickness in contoning. In both experiments,
one can ignore the integer constraints and solve for continuous solutions to
be rounded to nearest integers. Our method allows for directly optimizing
the desired integer values with significant accuracy gain over the rounded
solution.

Peurifoy et al. [2018] which maps the combination of 4 materials
into the resulting spectrum.

We test our methods on 16 target scattering cross sections shown
in Figure 6a and, for all targets, reach the globally optimal solution
with average objective of 19.47. For comparison, we also perform the
same inverse design (via MILP) on the targets but without enforcing
integer thicknesses. After rounding the obtained optimal but contin-
uous thicknesses to the nearest allowed integers, the error increases
significantly (30.30). For this particular problem, our MILP-based
integer-constrained inversion takes on average 44 seconds. We also
spend 4.8 seconds on the one-time bound precomputation of the
network nodes.

4.4.2 Contoning. In color reproduction for 3D printing via con-
toning [Babaei et al. 2017], inks with different thicknesses can be
superposed. Contoning avoids potential artifacts of the alternative

halftoning techniques that rely on spatial multiplexing of materials
on the surface.While contoningworkswell when ink concentrations
are low, with highly concentrated inks the quantization artifacts
start to appear as the thickness can only be controlled via tuning a
discrete number of layers. In an experiment similar to the previous
one, we show how ourmethod obtains the best discrete arrangement
of different ink layers for reproducing a given spectrum.
Following the setup of Shi et al. [2018], we want to reproduce

a target spectrum by superposing 30 layers of 11 different inks.
We train a PL-NSM with 3 layers of 50 neurons which maps the
layer layouts to the spectrum. Our printer can print 30 layers of 11
different inks (see Table 1 for design constraints).We have performed
this experiment with two different settings, in our first attempt
(similar to [Shi et al. 2018]) we set the x0 ∈ R11. Since the smallest
amount of ink that our fabrication device can deposit is a single
layer, we have to round the elements of x0 to the nearest integer
neighbors. This rounding step introduces error to our designs. In
the second setup, by defining x0 ∈ Z11 in our MILP formulation we
directly solved the integer inverse problem and found the optimal
integer design. In Figure 6b, we plot 16 target and reproduced
spectra. We also show the resulting spectra obtained by rounding
the optimal continuous layer thicknesses to the closest integers.
The average error in this experiment is 1.14 and 1.72 for optimal
integer and rounded solutions, respectively. OurMILP-based integer-
constrained spectral separation takes on average 40 seconds. The
bound precomputation for the considered network takes 8 seconds.

4.5 Combination of MILP and NA
One of the greatest advantages of using MILP for inverse design is
its optimality or near optimality guarantees. Despite this advantage,
the MILP approach does not scale with larger networks. On the
other hand, gradient-based local optimizers, such as NA [Ren et al.
2020] are very efficient even for large networks. As discussed in
Section 3.4, NA solutions are feasible solutions to MILP’s objective.
Therefore, we can produce feasible solutions via NA and continue
using MILP for improving the relaxed solution. In Figure 7, we
show this approach on 4 randomly target spectra in a spectral sepa-
ration problem. We use a larger PL-NSM consisting of 4 layers of
150 neurons, mapping an 8D ink ratio input to spectra. In all the
experiments, NA improves the feasible solution significantly faster
than MILP and by comparing NA solutions with the MILP’s relaxed
solution we can reach smaller optimality gaps (distance between
the yellow and the green lines instead of the distance between blue
and green lines) in a considerably less amount of time. Although
we use NA for computing feasible solutions, any other methods
capable of yielding feasible solutions efficiently, could be used. Fi-
nally, we would like to remind that this technique is only suitable
for non-combinatorial inverse design problems where all solutions
are trivially feasible.

4.6 Robustness Analysis
For analyzing the robustness of different designs (Section 3.5), we
use the recently proposed all-dielectric metasurface (ADM) setup
[Ren et al. 2020; Nadell et al. 2019]. ADMs are surfaces with nano-
structures which possess unique properties like high temperature
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Fig. 8. Schematic representation of an AMD metasurface. By adjusting
the sub-wavelength nano-structures (cylinders’ heights and radii), we can
modulate the spectral absorption profile (right).

resistance, zero ohmic loss, and low thermal conductivity. The prop-
erties of AMDs can be modulated by adjusting the structures and
arrangement of these nano-structures. In this experiment, the spec-
tral absorption of a particular AMD metasurface can be controlled
via changing the heights and radii of nano-cylinders on its surface
(Figure 8). As there exist 4 nano-cylinders, the design space can be
expressed by 8 parameters. The resulting absorption spectrum is
sampled at 300 points.

We train a convolutional PL-NSM that maps 8D designs to 300D
spectra. The network is made of 4 fully connected layers each with
500 neurons with ReLU activation functions and batch normaliza-
tion, followed by 3 deconvolution and 1 convolutional layer. In our
experiment, targeting two different spectra, we find a number of
corresponding designs via NA which have the best objectives. In
Figure 9, we show the (sorted) objectives and corresponding ro-
bustness for each solution. While, in Figure 9a, all objectives are
comparable, there is one design (solution 19) that has a significantly
higher robustness (indicated by a very small circle). This solution is
the design of choice for this target spectrum. Moreover, in Figure 9b,
sample 1 and 2 give very good accuracy and robustness at the same
time and are clearly the most preferred designs. In this experiment,
we spend on average 64 seconds on robustness calculation of each
design and 3.64 hours on a one-time bound precomputation. We also
set 𝜖 (Equation 9) to 10−3. While here we use a simple perturbation
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Fig. 9. Robustness analysis of two target spectra of the metasurface design
experiment. The size of the circle shows maximum deviation from the ob-
jective (Equation 9) and has an inverse relationship with robustness.

model for evaluating the robustness, more sophisticated perturba-
tions, such as erosion and dilation of designs [Sigmund 2009] are
possible and left for future work.

4.7 Scalability of MILP-Based Neural Inverse Design
While MILPs are known to be NP-hard problems [Bunel et al. 2020],
it is interesting to study their scalability in our context. We choose
the neural spectral separation experiment (Section 4.1) as a case
study for our scalability analysis. First, in order to see the effect of
network’s depth on the solve time, we train 4 different PL-NSMs
that perform forward spectral prediction for 8 inks. The trained
networks have from 6 to 12 hidden layers, each with 50 neurons.
In Figure 10a, we show the solve time for each of these networks
averaged for 10 target spectra. Similarly, in Figure 10b, we study the
effect of network’s width, by solving the same spectral separation
problem performed on 4 PL-NSMs with a single hidden layer of 100
to 400 neurons. Here also the reported time is the average for 10
different target spectra. Once again, in all experiments, we continue
the optimization to reach a duality gap of 0 and thus global optima.
We observe that increasing the depth and width of the network

increases the solve time, as expected in MILP problems. This is
because each new node (with unstable ReLU) in the network gives
rise to an additional binary and continuous variable, as well as new
linear and integer constraints, in Equation 5. Note that Figure 10 is
indicating the trend of theMILP for a fixed set of target performances
and solver settings. MILP solve time heavily depends on the solver’s
hyperparameters and the layout of the problem (Appendix C). As
a result, the absolute time reported in Figure 10 is not necessarily
valid for any arbitrary experiment. In practice we have noticed that
constrained problems scale better and typically converge faster. For
instance, the all-dielectric metasurface (ADM) network is by no
means invertible using our method. However, we managed to solve
it for the robustness problem by heavily restricting its input domain.

Finally, it is worth mentioning that as long as the network’s size
is manageable, the underlying complexity of the problem does not
affect the optimization complexity.

5 LIMITATIONS AND FUTURE WORK
Due to the NP-hardness of solvingMILPs, this method is not suitable
for large networks when searching for globally optimal designs. We
nevertheless solved some real-life inverse design problems [Ansari
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Fig. 10. Scalability of our MILP-based neural inverse design with the depth
and width of the network.

et al. 2020; Shi et al. 2018; Peurifoy et al. 2018] using this tool through-
out this paper. Looking at Figure 10a, we have found the globally
optimal solution through inverting a neural network with 12 hidden
layers each having 50 nodes in less than one minute. Thanks to the
immense expressive power of neural networks [Hornik et al. 1989],
such an architecture is capable of accurately replacing many com-
plex simulations. In fact, in this paper we trained forward models
from the literature [Ansari et al. 2020; Shi et al. 2018] with smaller
networks. In all these training, we used the same data with the
same dimensionality of design and performance spaces and ob-
tained nearly the same training error. In circumstances where using
larger networks is necessary, the relaxed solution provided by the
MILP solver help making informed decision on early stopping of the
optimization. In such cases, the improvement of the feasible solution
can also be accelerated via alternative solvers. An interesting direc-
tion for future work is to develop a solver customized to the type
of inverse problems we deal with. We believe that neural networks
with their recursive compositions are amenable to tailored heuristics
beyond those found in one-size-fits-all solvers [Gurobi Optimization
2018]. Ironically, machine learning is believed to be a potentially
adept tool for discovering such heuristics [Khalil et al. 2017]. Finally,
in addition to an accurate neural inversion method, the prerequisite
for a perfect neural inverse design pipeline is an accurately trained
NSM. While in our evaluations we ensure our trained NSMs are
highly accurate, the focus of this work is on accurate optimization
whose quality is measurable by the objective value of the optimiza-
tion. A neural inversion method robust to training imperfections is
highly interesting and is left for future work.

6 CONCLUSION
Neural networks are becoming first class citizens when it comes
to data-driven modeling in computational design and fabrication.
The black box reputation of neural networks has hindered applying
them in domains requiring interpretability. While this may to some
extent be true during their training, once trained, neural networks
are rather well-behaved mathematical functions. In this work we
showed that leveraging the underlying mathematical structure of
neural surrogate models leads to a tool with many attractive prop-
erties. We believe our work paves the way for making sense of
data-driven design processes in a more systematic manner.
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A BOUND PRECOMPUTATION ALGORITHM

ALGORITHM 1: Nodes’ Lower and Upper Bound Precomputation.
Input
𝐹\ // Trained neural network

𝑡max // Time limit for optimization

Design constraints // e.g., fabrication constraints
Output
Constraints // The set of all constraints including

the upper and lower bounds

begin
Constraints← Design constraints
for 𝑙 ← 1 to 𝐿 do

// Layers

Optimizer← Constraints // Updating the
optimizer with new constraints after
proceeding to the next layer

for 𝑘 ← 1 to 𝐾 do
// Nodes at layer 𝑙

Start Timer
Optimizer← Obj (Equation 7)
while Optimizer do

if 𝑇𝑖𝑚𝑒𝑟 ≥ 𝑡max or 𝑔𝑎𝑝 == 0 then
l𝑙
𝑘
= 𝑀𝐼𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑒𝑑 // Relaxed solution

determines the bound

Constraints← l𝑙
𝑘

Break // Reaching the time limit or
finding the optimal solution stops
the optimization

end
end
Start Timer
Optimizer← Obj (Equation 8)
while Optimizer do

if 𝑇𝑖𝑚𝑒𝑟 ≥ 𝑡max or 𝑔𝑎𝑝 == 0 then
u𝑙
𝑘
= 𝑀𝐼𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑒𝑑

Constraints← u𝑙
𝑘

Break
end

end
end

end
end

B SOFT ROBOT INVERSE KINEMATICS OBJECTIVE FOR
NEURAL ADJOINT METHOD

We have also solved the inverse kinematics soft robot problem using
the method of NA. We use the objective function introduced in [Sun
et al. 2021] with slight changes such that we can compare the errors
with the results of the MILP method. The objective function is made
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of three terms:

L𝑔 (𝜽 , 𝒖) :=
x𝐿𝑖 − t1 + _1 · B (

x𝐿, o
)
+ _2 · R(x0)

𝑖 ∈ [123, 124] ,
(14)

B
(
x𝐿, o

)
:=

𝑚∑︁
𝑖=1

(
max

(
𝑟 ·
√
2 + Δ𝑟 −

x𝐿𝑖 − o1 , 0))2 , (15)

R(x0) :=
∑︁

1<𝑖<𝑛,𝑖≠𝑛/2,
𝑖≠𝑛/2+1

(
x0
𝑖+1 − x

0
𝑖

2
−
x0
𝑖
− x0

𝑖−1
2

)2
. (16)

The L1 norm in Equation 14 is responsible for decreasing the dis-
tance between the tip of the soft robot and the target point. Equa-
tion 15 punishes the possible collision of the soft robot with the
obstacle and Equation 16 encourages the smoothness of the soft
robot. Finally, _1 and _2 are hyperparameters for balancing the
objective, which we tune to 0.9 and 0.1, respectively.

C IMPLEMENTATION DETAILS
In this work neural networks are trained using Pytorch library
on TITAN X GPU. The weights and biases of the network are
then imported to MATLAB. We can use them to formulate our
inversion problem using Yalmip [Lofberg 2004], and solve it using
Gurobi[Gurobi Optimization 2018]. Yalmip is a MATLAB toolbox

for rapid prototyping of optimization problems, and Gurobi is a
state of the art MILP solver.

Mixed integer neural inverse design requires MILP representation
(Equation 5) of the neural network and the constraints of the specific
problem at hand (Table 1, column 6). First, we need to compute the
upper and lower bound of each node using Algorithm 1. Having
computed the bounds, we can start the optimization and calculate
our optimal design (Table 1, column 7).
It is possible that the neural network is too large to be solved

efficiently using mixed integer neural inverse design. However, the
size of the network is not the only factor behind the scalability of
our method. In practice, for some problems in which the size of the
network is on the verge of tractability, changing the target perfor-
mance influences the solve time significantly. Although the CPU
type and number of cores could affect the efficiency of the solver,
the effect is not consistent. Surprisingly, factors like the order of the
constraints can change the MILP solve time. This sensitivity comes
from numerous heuristics (and consequently a huge number of hy-
perparameters) running under the hood of Gurobi. Unfortunately,
there is not a single combination that works best for either all the
problems or all the targets for one problem. To overcome the effect
of these uncertainties and to keep the hyperparameters manage-
able, we kept the recommended settings of Gurobi and reported the
average time on a batch of data.
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