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ABSTRACT

Structural topology optimization seeks to distribute material through-
out a design domain in a way that maximizes a certain performance
goal. In this work, we solve the topology optimization problem
by parameterizing the designs via recently introduced coordinate-
based neural networks. Specifically, we show that networks with
Fourier feature mapping can achieve state-of-the-art performance.
Our method enables the realization of a range of designs using a
single mesh via tuning the frequency content of the solutions inde-
pendently of the finite element discretization grid. This frequency
control offers attractive properties, such as mesh-independent re-
sults and sub-pixel filtering that leads to appropriate designs for
upsampling. We demonstrate our method on the compliance min-
imization problem, optimizing for the stiffest possible structure
within a weight budget for a prescribed set of loads.
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1 INTRODUCTION

The build volume and resolution of advanced manufacturing sys-
tems, such as multi-material 3D printers, are continuously grow-
ing [Regehly et al. 2020]. The rapid improvement in hardware
technologies has important consequences for computational design
algorithms. Advances in these algorithms have not kept pace with
the exploding design space, resulting in an increasing gap between
what we can compute and what we can fabricate. An important
and promising direction to address this swiftly widening gap is to
explore novel design representations.
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In this work, we demonstrate the power of recent coordinate-
based neural networks [Mildenhall et al. 2020; Tancik et al. 2020]
as a design representation for topology optimization (TO). Topol-
ogy optimization for structural design is a method for optimally
distributing material throughout a design in order to maximize a
certain performance metric. Our design algorithm optimizes over
the space defined by this naturally differentiable representation us-
ing exact gradients of the relevant structural performance metrics
evaluated using a high-performance multigrid elasticity solver and
analytical sensitivity analysis. We demonstrate that the coordinate-
based network representation’s inherent support for controlling
the frequency spectrum of the output design provides important
benefits for TO. On the one hand, by fixing the design frequency,
we are able to achieve mesh-independent results that are insensi-
tive to refinement of the finite-element discretization grid used for
simulation without resorting to standard TO smoothing filters. On
the other hand, by tuning this frequency, we can achieve a range of
designs using a single mesh including those unattainable by classic
counterparts.

Our method leads to appealing properties for design upsampling.
Aage et al. [2017] demonstrate how executing TO at high resolutions
leads to designs with a variety of intricate, multi-scale structures.
In order to optimize designs with roughly one billion voxels, the
immense computational effort is distributed over 8,000 CPUs on a
supercomputer. Liu et al. [2018] show that designs of similar resolu-
tions and complexities can be optimized on a single workstation by
employing advanced data structures and solvers. However, today’s
commercially available, lab-friendly, multi-material 3D printers can
already fit tera-voxel designs within their build volumes [Stratasys
2020]. It is clear that neither vast computing resources nor complex
software engineering can feasibly empower current algorithms to
scale to this resolution, let alone to the ever increasing manufac-
turing capabilities on the horizon. Therefore, design upsampling
remains a simple yet practical way of creating the necessary con-
tent for high-resolution manufacturing devices. As we will show,
selecting the proper frequency for a design at low resolution has a
significant effect on the compliance of the upsampled design.

2 RELATED WORK

Design representation. In computational design problems, discov-
ering the proper design representation is often the crucial step that
enables a practical algorithm. Such representations can be nonobvi-
ous, and the computational design and fabrication community has
exploited a surprisingly creative and diverse range of design rep-
resentations spanning from offset surfaces [Musialski et al. 2015],
to orthogonal geodesic nets [Rabinovich et al. 2018], to Chebyshev
nets [Garg et al. 2014]. These representations, however, tend to be
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highly problem-specific, failing to generalize to other tasks. Accord-
ingly, for many applications, voxel grids remain the most popular
representation despite the notoriously poor scaling of their mem-
ory requirements. Applying this discrete representation to design
heterogeneous objects at high resolutions, as needed to fully lever-
age digital fabrication hardware, leads to inverse problems with a
large, typically prohibitive number of variables. A particularly ver-
satile, resolution-independent classical design parameterization is
through explicit functional representations [Kou and Tan 2007]. In
this type of representation, a design attribute v at position (x, y, z)
is queried from an explicit analytical function v = f(x, y, z) [Shin
and Dutta 2001]. This method has been successfully applied for
continuous modification of heterogeneous designs, such as objects
with functionally graded material (FGM) [Elishakoff et al. 2005].
Unfortunately, despite their flexibility, these representations have
generally been limited to hand-tuned analytical functions with
limited ability to capture certain important material distribution
features such as sharp transitions.

Coordinate-based neural networks. Recently a few related explicit
functional representations called coordinate-based neural networks
have emerged from computer vision and graphics. These representa-
tions, capable of parameterizing different signals, such as as shapes
[Chen and Zhang 2019; Park et al. 2019] and scenes [Jiang et al.
2020; Mildenhall et al. 2020; Sitzmann et al. 2020], have achieved re-
markable success in numerous application domains. There are two
particularly successful coordinate-based networks both integrating
a Fourier transform. Sitzmann et al. [2020] use sinusoidal activation
functions in SIREN, whereas Mildenhall et al. [2020] pass the input
through a Fourier feature layer. Both methods vastly improve the
representation capacity for high-frequency signals.

Deep learning and computational design. Deep learning has re-
cently shown promise for advancing computational design algo-
rithms on two fronts. In the first line of work, it has been used
to develop differentiable surrogate models capable of accurately
predicting the performance of candidate designs at a fraction of the
cost of a full simulation [Baque et al. 2018; Umetani and Bickel 2018;
Wang and Shan 2006]. Machine learning techniques have demon-
strated success in generating approximate solutions to problems
such as fluid simulation [Tompson et al. 2017], elasticity [Zhang et al.
2016], and even general partial differential equations [Li et al. 2020].
The second line of work, closest to our own, employs neural net-
works as a design representation to, oftentimes, replace the standard
regular grid of variables used in density-based TO [Chandrasekhar
and Suresh 2021; Hoyer et al. 2019]. Concurrent work [Zehnder
et al. 2021] applies both approaches to minimum compliance TO,
representing both the optimal design and its static equilibrium
under the applied loads with coordinate-based networks—thereby
achieving a fully mesh-free algorithm at the cost of an expensive
inner optimization implementing the equilibrium solve. While we
rely on a computational mesh to efficiently evaluate compliance, we
show that our method can still achieve mesh-independent solutions.
Furthermore, compared to Zehnder et al. [2021], we investigate the
effect of frequency tuning of the coordinate-based networks in
topology optimization and demonstrate the importance of perform-
ing the optimization steps in the underlying design space rather
than in density space to reap its full benefits.
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3 BACKGROUND
3.1 Compliance minimization

We showcase our optimal design framework on the popular mini-
mum compliance TO problem for linear elasticity: determining the
spatial distribution of a fixed budget of material that achieves the
stiffest possible structure for a prescribed loading scenario. We em-
ploy the standard Solid Isotropic Material with Penalization (SIMP)
approach [Bendsoe and Sigmund 2013], which casts the TO problem
as the optimization of a density scalar field p : R — [0, 1] that in
turn determines both the mass and stiffness of the material at each
point. The TO algorithm is designed to ultimately converge to an
essentially binary design, with p assuming a value of either nearly
0 (free space) or 1 (full fabrication material) at each point. However,
intermediate density values are generated during the course of
optimization to enable the use of gradient-based optimization.

Under the SIMP method, the total volume and elasticity tensor
field (material stiffness) of a design specified by density field p are
defined as:

V(p) = /Q pdx, Clp) = (e + (1 - )P,

where Q is the design domain, chase jg the elasticity tensor of the

full printing material, p is the SIMP penalty parameter that we fix
at p = 3 in our experiments, and € = 10~ is a small constant used
to prevent the linear elasticity operator from being singular. This
interpolated elasticity tensor field can then be used to simulate the
structure’s deformation under the prescribed loads and evaluate
the compliance (work done by the loads), the performance metric
of interest. We discretize the linear elasticity equation using finite
elements, employing tensor-product polynomial basis functions
on a regular grid. The results shown in this paper all use bilinear

(2D) and trilinear basis functions (3D) ?S)i, but the code supports
arbitrary polynomial degrees. The FEM equilibrium displacement
vector u(p) for the design is found by solving the linear system:

K(pyu(p) = £, K(p) := Y (e +(1 = )p(xe)?)S{ KoSe.

e

[Kolap = /8 (Fa): % 6(F ) dx,

where K(p) is the stiffness matrix, and f is the load vector deter-
mined from the applied boundary conditions. K is assembled from
the full-density per-element stiffness matrix Ky (identical for all
elements to the one for a reference element & since the simulation
mesh is a regular grid), scaled according to the SIMP interpolation
rule for the density evaluated at element center x,, and finally
distributed to the appropriate entries of the sparse global stiffness
matrix by the rectangular selection matrix S,. This is the sparse
binary matrix that, when applied to u, extracts the displacements
of the element’s nodes as a small vector u, := Scu. We solve the
linear system using a high-performance multigrid-preconditioned
conjugate-gradient solver based on [Wu et al. 2016] in order to
evaluate the compliance J(p) := f - u(p). We can finally formulate
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the minimum compliance TO problem as:

mpinJ(p)
st. V(p)<W (1
0<p<1,

where Vj is the volume (material) budget.
The analytical gradients of volume and compliance with respect
to the element center densities p. = p(x.) are:

av aJ T
= =—p(1- Koue. 2
Gpc = 6L ,m = P - p i Kou @

3.2 Traditional density-based TO and filtering

The traditional approach for solving (1) is to represent the design
directly using the vector of element-center densities p, (defining a
piecewise constant density field) and then apply a finite dimensional
optimization algorithm to the resulting discrete minimization prob-
lem. A well-known artifact that immediately arises is checkerboard
patterns (arrangements of voxels alternating between fully solid
and fully void) due to the stiffness of these patterns being overesti-
mated by the finite element simulation. The standard mitigation for
this issue employed in the literature is to insert a smoothing filter
[Bruns and Tortorelli 2001] into the representation that maps the
grid of optimization variables (sometimes called blueprint densities)
to a smoothed piecewise constant density field. This smoothing
filter takes the form of a weighted average of blueprint densities
over a neighborhood surrounding the output voxel.

Smoothing filters mitigate the most egregious mesh-dependence
issues of the voxel-based representation, but the filters themselves
are still mesh-dependent, and the frequency of the generated de-
signs is limited by the resolution of the finite element grid. As we
demonstrate in Section 5.2, simultaneously eliminating checker-
board artifacts while still generating designs with features nearing
the resolution of the simulation grid is problematic.

4 METHOD

4.1 Neural design parameterization

Instead of parametrizing the density field p by a vector of element-
center density variables, we employ a feedforward neural network
Fg with Fourier feature mapping [Tancik et al. 2020] to define a
continuous function of the Cartesian coordinates x € R" (n € 2,3)
in the design domain:

p(x) = Fg(‘?}(x)) = sofLogl=lo fLl-10. . .oglofl(sf,,(x)) (3a)
Fo (x) = [cos(27Bx), sin(27Bx)] (3b)
Y =wix"1+b!, vi<i<lL, (3¢)

The activation function gl is the well-known rectified linear unit
(ReLU). The last activation function s is a sigmoid function that
helps push the densities toward binary values (the standard “Heavi-
side projection filter” used in TO). The weights W! and biases b’ at
all layers (1 to L) make up the network’s parameters 6, which are
the unknowns we seek. The peculiarity of this network comes from
the Fourier feature mapping operator 7 (-). The matrix B € RI%" g

sampled from a normal distribution with mean 0 and variance o2,
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with d being the size of the Fourier feature layer. Standard deviation
o is referred to as the Fourier feature scale, or scale for short, and
is the most important hyperparameter for our method.

Tancik et al. [2020], relying on the Neural Tangent Kernel regres-
sion [Jacot et al. 2018], showed that the Fourier feature mapping, a
special case of Fourier features in kernel regression [Rahimi et al.
2007], enables tuning the range of frequencies that can be learned
by the network. So far, the frequency tuning in explicit neural rep-
resentations has received little attention, only being tuned to avoid
overfitting or underfitting. Only in a concurrent work, Dupuis and
Jacot [2021] lay the theoretical ground of the relationship between
classic filtering in SIMP and the filtering induced by the neural
representation.

4.2 Neural topology optimization

Now we describe our fully differentiable design pipeline for the
minimum compliance TO problem (Figure 1). We initialize weights
0 of the explicit neural design representation (ENDR) so that it
generates a uniform gray design that exactly satisfies the volume
constraint, a common initialization used in TO. We use orthogonal
random initialization (Saxe et al. [2013]) for weights at all layers
except the last, similar to Hoyer et al. [2019]. In the last layer, we
set the weight close to zero (randomly sampling from a normal
distribution with mean 0 and standard deviation 10™%) and set the
biases to Vj so that they generate the desired uniform gray level
(as in Zehnder et al. [2021]). This initialization strikes a balance
between a being a favorable starting point for network training
and satisfying the problem-specific volume constraint.

At each iteration, a candidate design is evaluated by querying
the density from the ENDR at the simulation grid element centers
X and running our multigrid FEM solver to compute compliance.
The analytical gradients of compliance and volume are then used
to update the ENDR weights 6.

Note that our self-supervised pipeline does not depend on labeled
data; the network weights are optimized to directly minimize com-
pliance and satisfy the volume constraint. In contrast to some other
efforts employing neural parameterization for TO that rely entirely
on automatic differentiation to differentiate the performance metric
with respect to the network parameters [Hoyer et al. 2019], we fol-
low Chandrasekhar and Suresh [2021] and use efficient analytical
formulas (2) for the derivatives of volume and compliance with re-
spect to the sampled densities. We then backpropagate these these

derivatives through the network to obtain the necessary gradients

. . L (8] _ 8] dp
with respect to 6 using automatic differentiation ( 90 = 35 00)"

4.3 Enforcing constraints

Our ENDR enforces the pointwise density bounds by construction
due to the sigmoid activation function s it applies to its output. The
upper bound on volume is a nonlinear inequality constraint in our
representation that requires more careful consideration.

We obtained our best results by optimizing our model using
the popular algorithm Adam [Kingma and Ba 2014], which can-
not enforce such constraints directly. Hoyer et al. [2019] proposed
globally biasing the output densities to manually enforce the target
volume at every step as an equality constraint. We found this strat-
egy degraded the optimizer’s convergence and tended to introduce
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l Computing compliance

Figure 1: A single iteration of our end-to-end differentiable topology optimization via explicit design representation networks.

artifacts into the design. The Optimality Criteria (OC) algorithm
is a longstanding heuristic alternative to gradient-descent-style
optimizers for TO that also globally adjusts the design at each step
to enforce the volume constraint [Bendsoe and Sigmund 2013].
While it is usually quite effective when operating on traditional
density-based representations, we found it not to perform well for
the highly nonlinear ENDR (Section 6).

We instead enforce the volume bound as a soft constraint, adding
a one-sided loss term L, to the compliance objective to form a total
loss function Ly :

L, = max(—log(1 + Vo — V(p)),0) (4a)

Ly =]+A Ly, (4b)

where weight A controls how precisely the volume constraint is
enforced. We update A at each iteration to balance the objective
terms, but the gradient of L; is computed treating A as a constant.
We recommend using A = min(J/Ly, J1/3Ly,), where J; and Lo,
are the compliance and volume loss after the first iteration. In our
experiments, this scheme generally keeps the volume constraint
violation below 10™* even in upsampled designs.

5 EVALUATION

5.1 Experimental settings

We use L = 4 layers in all experiments. Unless explicitly stated
otherwise, we use 256 and 512 neurons per layer for 2D and 3D
examples, respectively, and d = 1024 Fourier feature samples. We
use Adam [Kingma and Ba 2014] to train the network, and we
set the learning rate to 107> in 2D and 3 x 10™* in 3D. Models are
trained for 5000 iterations unless otherwise specified. The minimum
compliance problem is solved for an isotropic base material CPas¢
with Poisson’s ratio v = 0.3 and Young’s modulus E = 1. We do not
use any regularizations, learning rate schedulers, or other adaptive
schemes to accelerate convergence.

5.2 Frequency priors for generative design

The central observation of our work is that the scale hyperpa-
rameter o has a profound effect in the context of neural topology
optimization. Different values of o bake different frequency priors
into the density field representation and lead to different (locally)
optimal designs. As we will see, this capacity to control the design’s
spatial frequency continuously and independently of the grid reso-
lution proves extremely useful in creating designs beyond the reach
of traditional topology optimization.

In Figure 2, we demonstrate the effect of tuning o for a fixed
boundary condition and simulation grid. Increasing o admits higher
frequencies in the design representation, prompting the optimizer
to generate more intricate results with finer branching features.
We note that the stiffest design is achieved by the highest scale
parameter, though all solutions provide good stiffness apart from
the overly coarsened o = 2 design. Additionally, all solutions, even
those obtained for large o do not suffer from overfitting. In simple
image fitting experiments, Tancik et al. [2020] have shown that
increasing the scale leads to over-fitting the input signal, which
manifests as noise when sampling the ENDR at a perturbation of
the coordinates used for training. In our experiments, however, the
TO results do not suffer this issue. We upsampled our solution for
o = 13 at 20X resolution along each dimension and found that
the design did not change significantly in compliance, topology, or
appearance.

Subvoxel filtering via frequency control. As discussed in Sec-
tion 3.2, the complexity of designs produced by traditional grid-
based TO algorithms is tied to the resolution of the simulation
grid and the radius of the smoothing parameter (Figure 3). As we
show in Figure 3, our method’s scale parameter ¢ has an effect very
similar to the radius parameter for a discrete filter: larger scales
correspond to smaller filter radii and thus more detailed designs.
But, via o, we can continuously control the frequency of the output
design in a completely mesh-indepedent way while using a fixed
simulation grid. Most importantly, for sufficiently high o, we obtain
highly detailed designs that correspond to a subvoxel smoothing
filter radius and yet do not suffer from checkerboarding. As we will
see, these subvoxel solutions can be excellent candidates for design
upsampling.

Mesh-independent solutions. In classic TO methods, the well-
known issue of mesh-dependent solutions has been mitigated with
several different techniques like perimeter control [Petersson 1999],
constraining the density gradients [Borrvall 2001], or, most popu-
larly, density filters. Using ENDR, a fixed o achieves very similar
designs regardless of the underlying resolution; fixing scale o lim-
its the complexity introduced by the increase in mesh resolution.
Figure 4 visualizes the solutions to the same TO problem solved
at three different mesh resolutions with the same scale, and we
observe very similar structures in each.
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Figure 2: The effect of the scale hyperparameter o on the quality and compliance (topology optimization of an MBB beam at
300 X 100 resolution). The o range shown here, at this resolution, produces a diverse set of designs beyond which we did not

obtain novel solutions.
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Figure 3: Subvoxel filtering via frequency control. We compare our ENDR-based optimizer with a traditional voxel-based
design representation employing a smoothing filter whose radius is expressed in units of the grid’s voxel width. Without the
filter, a highly detailed design is generated, but it suffers from checkerboard patterns (red circle). Using a filter radius of only
one voxel eliminates the checkerboard but severely compromises the design’s complexity. Our frequency control scheme not
only avoids explicit voxel-based smoothing, but it can achieve designs corresponding to subvoxel filtering.
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Figure 4: We demonstrate the mesh-independence of our method by visualizing density fields at different resolutions for a set

of fixed o values.

5.3 Design upsampling

Given the extreme resolution demands of today’s hardware, up-
sampling is a simple and attractive way to generate designs for
manufacturing. In practical scenarios like optimizing a structure to
be 3D printed, we are limited by the time and/or memory budget for
FEM computations. Ideally, we would like to fix a maximum source
resolution based on a computation budget, compute an optimal
design at this resolution, and upsample the design to the desired
target resolution.

Synthesizing high-resolution designs from low-resolution ones
is fundamentally difficult in topology optimization. The optimal
design that can be resolved at a coarse resolution is likely to have an
entirely different topology from the optimal design for a fine grid,

and so a simple upsampling scheme is bound to be sub-optimal.
Given that better designs at higher resolutions have more detailed
structures, we propose to leverage the subvoxel filtering capability
of our method and generate more detailed designs as candidates for
upsampling. As we saw in Section 5.2, ENDR can generate highly
detailed but checkerboard-free designs without increasing mesh
resolution. This is particularly interesting since one can obtain a
solution at a coarse resolution that qualitatively and quantitatively
matches the result of a fine-resolution voxel-based design with a
single-voxel smoothing radius.

Figure 5 demonstrates the potential of this approach. Our ex-
periment follows these steps: (1) Train a model with scale ¢ at a
chosen coarse source resolution grid to obtain density field ps. (2)
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Figure 5: We compute at a source resolution, here 300 x 100,
a design, upsample it to different target resolutions (375, ...,
900), and use them as initializations for a standard voxel-
based method. The smallest change in the compliance value
indicates the best upsampling ratio for a source design.

Interpolate ps to a chosen fine target resolution grid, by querying
the ENDR !, obtaining p;. (3) Using p; sampled at the element cen-
ters as an initialization, run the traditional voxel-based TO on grid,
to obtain the piecewise constant density field pyoxel. (4) Compute
the compliance reduction Jy; achieved by step (3). The following
stopping criterion is used for step (3):

S sim1))2
error = M < tol, (5)
Ne

where n is the number of grid voxels, tol = 1077 is the convergence
tolerance, and 5’ is the vector of per-element density variables
at the ith optimization iteration. In the ideal case, we would find
Jaif = 0, meaning the upsampled design generated on grid, is
already nearly optimal for grid,. As we see in Figure 5, depending
on the scale, different neural designs computed at coarse resolutions
are the best candidates for upsampling to higher resolutions. We
note that at 300x100 source resolution, higher os (corresponding to
sub-pixel smoothing radii) tend to create more detailed solutions
that cannot be properly represented on the coarse grid using the
traditional TO’s voxel-based smoothing filter but that perform well
when discretized at higher resolutions.

5.4 Comparison with voxel-based and CNN
parameterization

Our method obtains results that quantitatively match or exceed the
results of two state-of-the-art methods: one employing a traditional
voxel-based design representation [Andreassen et al. 2011] and
another using a CNN design parameterization [Hoyer et al. 2019].
This performance is at the cost of longer computation due to a
larger network and a slower learning rate (see Section 6.1). We
restricted the optimizer to use 5000 iterations, but noticed that

!Experimenting with different upsampling method, we found that neural upsampling,
i.e., querying the ENDR at higher resolutions, bilinear, and bicubic interpolation
converge to highly similar compliances at larger upsampling ratios.
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the voxel-based method and CNN fully converge in around 300
iterations. We use a filter radius of 1 for the voxel-based method
and 2 for CNN (the default value in the original paper [Hoyer et al.
2019]), leading to solutions with simpler features compared to ours.

5.5 3D results

Our method can produce 3D designs as demonstrated in Figures 7-9
without any major change to the pipeline except the architectural
modifications mentioned in Section 5.1. Despite the cubic increase
in degrees of freedom of the finite element simulation under grid
refinement, our solver still rapidly converges to a solution displace-
ment field in just a few inexpensive CG iterations.

5.6 Performance

For producing 2D results, we use the sparse Cholesky factoriza-
tion routine for the elasticity problem at each iteration. The solver
time averaged across all iterations is 0.161s and 0.164s for the
300x100 MBB beam and 250x125 bridge examples in the top and
bottom rows of Figure 6, respectively. For 3D results, we use a high-
performance multigrid-preconditioned conjugate gradient solver at
each iteration. The solve time is strongly influenced by two param-
eters, € (the relative Young’s modulus assigned to the void, which
impacts the stiffness matrix’s conditioning number) and the con-
vergence tolerance, which we have defined as the residual force
norm relative to the applied force norm. We set both of these pa-
rameters to 10~ which strikes a good balance between accuracy
and runtime. We used three coarsening levels in our multigrid hi-
erarchy, ran one full multigrid cycle as a preconditioner for each
CG iteration, and ran two Gauss-Seidel smoothing iterations at
each level before restricting the residual and after interpolating
the correction. We also re-use the displacement field computed
for the previous density field as an initial guess for the solve on
the updated design. With these settings, in 3D, the average times
per iteration are 5.74s and 2.84s for the 320x160x80 bridge and
256x128x128 cantilever examples, respectively. The remaining time
of each iteration—spent evaluating the network and updating its
weights via backpropagation—approaches the elasticity solve time
when done on our Nvidia Quadro RTX 8000 GPU but does not
exceed it. For higher resolution designs, GPU memory limitations
can force the network operations to be done on the CPU. In that
case, the network evaluations and updates can become a timing
bottleneck. The CPU used in all benchmarks is an AMD Ryzen
5950X.

6 CONVERGENCE

The primary limitation of our method is the large number of training
iterations required to reach an optimal design. This is particularly
striking in comparison to prior work [Zehnder et al. 2021] where,
despite their similar design representation, solutions converged in
fewer than 200 iterations as opposed to the 5000 iterations taken
by our method. However, we argue that the increased convergence
rate comes at the cost of compromising the ENDR’s benefits. We
investigate the fundamental differences between the “density-space”
Optimality Criteria (OC) method employed by [Zehnder et al. 2021]
and the direct gradient-based optimization used here.
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Figure 6: Comparison of the proposed method against the voxel- and CNN-based methods for a set of boundary conditions.
Our method produces qualitatively different results whose compliances are either very close to or below those from the other
methods. In the middle row, for visualization purposes only, we have mirrored the final result of all models.

6.1 Density-space OC

In order to accelerate convergence and eliminate artifacts, Zehn-
der et al. [2021] recommend decomposing the design update rule
into two substeps (1) using the OC algorithm to update the design
in “density space” (updating the vector of densities obtained by
querying the network at their quadrature points, analogous to the
element centroids in our framework); and (2) training the network
to fit the generated density field to the updated design (essentially
an image-fitting step). This strategy benefits from the rapid con-
vergence of the OC algorithm for simple density parametrizations,
leading to low iteration counts.

We note that if step (2) runs to convergence and is able to per-
fectly fit the OC update with zero error, the full algorithm will
actually follow an identical sequence of steps as if one discarded
the representation network and simply ran OC on the discrete
vector of density samples. A perfect fit is of course impossible if
the chosen o prevents the network from representing the updated
design—meaning the neural-based design will diverge from the
discrete optimization—and yet our experiments with this two-step
approach still showed severely diminished frequency-control and
checkerboard-avoidance benefits when using ENDR in this mode.

Figure 10 reports some characteristic results from these experi-
ments. We follow the approach from Zehnder et al. [2021], alter-
nating between applying OC to update the voxel density field and
fitting the network to the updated densities by minimizing a mean
squared error (MSE). We omitted the additional smoothing filter
recommended in [Zehnder et al. 2021] as our aim is to evaluate the
native frequency-control capabilities of the network. We studied the
effect of running more or fewer iterations of the MSE minimization
between each OC step. For a moderate number of fitting iterations
(“4MSE=50"), we observe that ENDR loses much of its ability to
smoothly control the frequency content of the design; it produces
designs with overly complex, noisy features and high compliance
at lower scales and even suffers from checkerboard artifacts at
higher scales. Reducing the number of fitting iterations to artifi-
cially prevent approximating the discrete OC iterates too closely
helps somewhat (Figure 10, right), but still a jagged, unstructured
design with poor compliance is obtained.

For these experiments, we used 128 neurons per layer and d =
256 Fourier features. We used 300 outer optimization steps and set
Adam’s learning rate to 3 x 10~* for the MSE fitting.

6.2 Native OC

While typically applied to voxel-based design representations, the
OC update rule does naturally generalize to other design parametriza-
tions like ENDR—all that is needed is the gradient of compliance
and volume with respect to the design variables. One would hope
that applying this generalized OC algorithm natively in the ENDR
could achieve the rapid convergence of OC seen in density space
while retaining the representation’s benefits. Unfortunately, the OC
method did not converge reliably in our experiments, and we con-
jecture this is due to the performance of the heuristic OC algorithm
degrading due to the high nonlinearity of our design representation.

7 CONCLUSION

We presented a novel approach to solving the long-standing prob-
lem of topology optimization. Although neural design parameter-
ization in TO is not new, we revealed some new benefits of this
approach. Specifically, the recently proposed neural parameteriza-
tion with Fourier feature embedding allows for continuous tuning
of a frequency prior on the design in a straightforward manner.
Our method generates a range of designs independently of the
finite element discretization grid, with attractive properties, such
as mesh-independency and scale-aware upsampling. Our proposed
method is shown to outperform or be on par with standard FEM-
based solutions in terms of stiffness. Our current formulation and
its accompanying optimization requires a larger number of itera-
tions. We believe reducing the iteration count is feasible through
improvements to the volume constraint enforcement strategy and
tweaking of the activation functions.
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